Como siempre conmigo, por favor, compruébelo dos veces. La secuencia es bastante obvia.
Transformaremos ambas en ecuaciones diferenciales por el "Método de los Coeficientes". Es similar a uno de los métodos de Benoit Cloitre, pero un poco más directo.
Utilizando los dos formularios OGF: $$V\left(x\right)={\displaystyle \sum_{k=0}^{\infty}} v_{k}x^{k}, U\left(x\right)={\displaystyle \sum_{k=0}^{\infty}}u_{k}x^{k}$$ Las técnicas de alineación/conversión son:
$$\left[x^{k}\right]\frac{V\left(x\right)}{x^{2}}=v_{k+2};\left[x^{k}\right]\frac{V\left(x\right)}{x}=v_{k+1};\left[x^{k}\right]x\cdot\frac{\partial V(x)}{\partial x}=n\cdot v_{k}$$ Alineamos el $[x^{k}]$ condiciones para $V_{k}\left(x\right),U_{k}\left(x\right)$ y aplanar las recursiones: $$n\cdot v_{n+2}-v_{n+1}-n\cdot v_{n}=0$$ $$n\cdot u_{n+2}-n\cdot u_{n+1}-u_{n}=0$$ $x\cdot\frac{\partial\left(\frac{U\left(x\right)}{x^{2}}\right)}{\partial x}-x\cdot\frac{\partial\left(\frac{U(x)}{x}\right)}{\partial x}-U\left(x\right)=0$
$x\cdot\frac{\partial\left(\frac{U\left(x\right)}{x^{2}}\right)}{\partial x}-x\cdot\frac{\partial\left(\frac{U(x)}{x}\right)}{\partial x}-U\left(x\right)=0$
$\left(\frac{1}{x}-1\right)\frac{\partial U\left(x\right)}{\partial x}-\left(\frac{2}{x^{2}}-\frac{1}{x}+1\right)U(x)=0$
$x\cdot\left(1-x\right)\frac{\partial U\left(x\right)}{\partial x}-\left(2-x+x^{2}\right)U(x)=0$
$\frac{1}{U\left(x\right)}\frac{\partial U\left(x\right)}{\partial x}-\left(\frac{\left(x^{2}-x+2\right)}{x\cdot\left(1-x\right)}\right)=0$
$U\left(x\right)=\frac{e^{-x}\cdot x^{2}}{\left(1-x\right)^{2}}$
Donde la constante de integración se evalúa mediante los tres primeros términos de la expansión de la serie de Taylor.
$x\cdot\frac{\partial\left(\frac{V\left(x\right)}{x^{2}}\right)}{\partial x}-\frac{V\left(x\right)}{x}-x\cdot\frac{\partial V\left(x\right)}{\partial x}=0$
$x\cdot\frac{-2}{x^{3}}V\left(x\right)+x\cdot\frac{1}{x^{2}}\frac{\partial V\left(x\right)}{\partial x}-\frac{V\left(x\right)}{x}-x\cdot\frac{\partial V\left(x\right)}{\partial x}=0$
$\left(\frac{1}{x}-x\right)\frac{\partial V\left(x\right)}{\partial x}-\left(\frac{1}{x}+\frac{2}{x^{2}}\right)V\left(x\right)=0$
$\left(1-x^{2}\right)\cdot x\cdot\frac{\partial V\left(x\right)}{\partial x}-\left(x+2\right)\cdot V\left(x\right)=0$
$\frac{1}{V\left(x\right)}\frac{\partial V\left(x\right)}{\partial x}-\left(\frac{2}{x}-\frac{1}{2\cdot\left(x+1\right)}-\frac{3}{2\cdot\left(x-1\right)}\right)=0$
$ln\left(V\left(x\right)\right)=ln\left(x^{2}\right)-ln\left(\left(x+1\right)^{\frac{1}{2}}\right)-ln\left(\left(\left(x-1\right)^{\frac{3}{2}}\right)\right)+C$
$V\left(x\right)=\frac{x^{2}}{\left(x-1\right)^{\frac{1}{2}}\cdot\left(x+1\right)^{\frac{3}{2}}}$