¿Son realmente los derivados manera la fuerza bruit?
Las derivadas de $$f(x_1,\dots,x_n,y)=-\alpha \left(y-k_1\right)^2-\beta \sum_{i=1}^n\left(k_2-x_i\right)^2-\gamma \sum_{i=1}^n\left(y-x_i\right)^2 - \frac{\delta}{y-d} \sum_{i=1}^n (x_i-d)\, $$ son ceros en los puntos estacionarios, $$\begin{cases} f''_{x_j}(x_1,\dots,x_n,y)=2\beta \left(k_2-x_j\right)+2\gamma \left(y-x_j\right) - \dfrac{\delta}{y-d}\, =0\\ f'_y(x_1,\dots,x_n,y)=-2\alpha \left(y-k_1\right)-2\gamma \sum\limits_{i=1}^n\left(y-x_i\right) - \dfrac{\delta}{y-d} \sum\limits_{i=1}^n (x_i-d)\, =0, \end{cases}$$ o, para $y\not=d,$ $$\begin{cases} 2\beta (y-d)\left(k_2-x_j\right)+2\gamma (y-d) \left(y-x_j\right) - \delta\, =0, \quad j=1\dots n\\ -2\alpha (y-d)^2\left(y-k_1\right)-\gamma (y-d)^2\sum\limits_{i=1}^n\left(y-x_i\right) - \delta \sum\limits_{i=1}^n (x_i-d)\, =0, \end{cases}$$ así que $$\begin{cases} -2(\beta+\gamma) (y-d)x_j + 2(y-d)(\beta k_2+\gamma y) - \delta\, =0, \quad j=1\dots n\\ -2(\beta+\gamma) (y-d)\sum\limits_{i=1}^n x_i + 2n(y-d)(\beta k_2+\gamma y) - n\delta\, =0\\ (\gamma-\delta)(y-d)^2\sum\limits_{i=1}^nx_i + (2\alpha k_1 - \gamma y)n(y-d)^2 +n\delta d\, =0. \end{cases}$$ Suma de los factores de las ecuaciones segunda y tercera $2(\gamma-\delta)(y-d)$ y $(\beta+\gamma)$ da $$\begin{cases} -2(\beta+\gamma) (y-d)x_j + 2(y-d)(\beta k_2+\gamma y) - \delta\, =0, \quad j=1\dots n\\ 2(\gamma-\delta)(2n(y-d)(\beta k_2+\gamma y) - n\delta) + ((2\alpha k_1 - \gamma y)n(y-d)^2 +n\delta d)(\beta-\gamma)\, =0, \end{cases}$$ y esto conduce a la ecuación cúbica para $y$ y expresiones explícitas para $x_j.$