Cuál es el número cardinal de estos conjuntos :
-
$X:= \left\{ A \in P(\mathbb Z) \mid \sum_{a \in A} |a| \text{ is finite} \right\}$
-
$Y:= \left\{ B \in P(\mathbb R) \mid(\mathbb {R}\setminus B) \space \text {is countable} \right\}$
-
$Z:= \left\{ C \in P(\mathbb R) \mid|C| = \mathfrak{c} \right\}$
Mis soluciones:
$1.$ Defina $ f : \left\{x\in P(\mathbb Z) | \text {x is finite subset}\right\} \to \mathbb N$
$\space \text{defined by :} \begin{cases} P_{lastdigit7} \space , & \text{if $y\in x>0$} \\ P_{lastdigit3}, & \text{if $y\in x<0$} \\\end{cases} $ así que $f(X) = P_{y1}*P_{y2}* \cdots * P_{yn}$
$Py:=$ el número primo en el lugar y , $P_1 = 2 , P_2=3$ y así sucesivamente..
$P_{lastdigit7}:=$ el número primo en el lugar y cuando la última cifra es 7 $P_1 = 7 , P_2=17$ ...
$P_{lastdigit3}:=$ el número primo en el lugar y cuando la última cifra es 3 $P_1 = 3 , P_2=13$ ...
Creo que es una biyección y su prueba que es contable , $\aleph_0$ .
2.Queremos $(\mathbb {R}\setminus B)$ sea contable por lo que $B$ debe ser incontable .
así que vamos a encontrar cardinalidad de conjuntos contables.
Límite alto : $|\mathbb R ^{\mathbb N}| = \mathfrak{c}.$
Límite bajo: $| \left\{0,1 \right\} ^{\mathbb N}| = \mathfrak{c}$ .
Así que $|Y|=\mathfrak{c}$ .
$P(\mathbb R)=\left\{ Countable \space subsets \right\} \bigcup \left\{ Uncountable \space subsets \right\} \implies $
$2^\mathfrak{c}=|P(\mathbb R)|=|\left\{ Countable \space subsets \right\}| + |\left\{ Uncountable \space subsets \right\}| = $
$\mathfrak{c} + |\left\{ Uncountable \space subsets \right\}| \implies |\left\{ Uncountable \space subsets \right\}|=2^\mathfrak{c}. $
$|Y|=2^\mathfrak{c}.$
$3.$ En el ejercicio 2 demostramos que $|C|=2^\mathfrak{c}.$
¿Son correctas mis pruebas?