Supongamos que $G \subset A\subset \mathbb{R}^n$ y $A$ está cerrado. ¿Cómo puedo demostrar que $\bar{G}\subset A?$ ( $\bar{G}$ significa el cierre de G.)
Mi primera suposición fue utilizar la proposición de que el cierre de un conjunto es cerrado (que ya he demostrado). Así que.., $G\subset A \implies \bar{G}\subset \bar{A} \implies \bar{G}\subset A.$ Pero esta prueba parece incompleta.
¿Alguna idea?