Wolfram MathWorld estados que $$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = \frac{ \pi \sqrt{3}}{18} \Big[ \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) \Big]- \frac{4}{3} \zeta(3) $$
donde $\psi_{1}(x)$ es la trigamma función.
No he sido capaz de obtener la respuesta en esa forma.
El uso de la expansión de Taylor de $ \displaystyle \arcsin^{2}(x) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2} \binom{2n}{n}} (2x)^{2n}$,
$$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx. $$
Entonces yo integrada por partes.
$$ \begin{align} &4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \, dx \\ &= \frac{\pi^{2}}{9} \ln \left(\frac{1}{2} \right) - 8 \int_{0}^{\frac{1}{2}} \frac{\arcsin (x) \ln (x)}{\sqrt{1-x^{2}}} \, dx \\ &= - \frac{\pi^{2}}{9} \ln 2 - 8 \int_{0}^{\frac{\pi}{6}} u \ln (\sen u ) \ du = - 8 \ln 2 \int_{0}^{\frac{\pi}{6}} u \ du - 8\int_{0}^{\frac{\pi}{6}} u \ln (\sen u ) \ du \\ &= - 8 \int_{0}^{\frac{\pi}{6}} u \ln ( 2 \sen u ) \ du = -8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \ln (1-e^{2iu}) \ du \\ &= 8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \sum_{n=1}^{\infty} \frac{e^{2 u}}{n} \ du = 8 \ \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\frac{\pi}{6}} u \cos (2nu) \ du \\ &= \frac{2 \pi}{3} \sum_{n=1}^{\infty} \frac{\sin (\frac{n \pi}{3})}{n^{2}} + 2 \sum_{n=1}^{\infty} \frac{\cos (\frac{n \pi}{3})}{n^{3}} - 2 \zeta(3) \\ &= \frac{2 \pi}{3} \Bigg( \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{2}} + \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{2}} \Bigg) \\ &+ \ 2 \Bigg( \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{3}} - \sum_{n=0}^{\infty} \frac{1}{(6n+3)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{3}} \\ &+ \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{3}} + \sum_{n=1}^{\infty} \frac{1}{(6n)^{3}} \Bigg) - 2 \zeta(3) \\ &= \frac{\pi \sqrt{3}}{108} \Bigg( \psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) \Bigg) + \frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) -28 \zeta(3) \\ &+ \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) + 4 \zeta(3)\Bigg) - 2 \zeta (3) .\end{align}$$
A partir de ahí me he ido en círculos tratando de obtener la respuesta en la forma señalada anteriormente mediante la duplicación de las fórmulas para $\psi_{1}(x)$ y $\psi_{2}(x)$.
EDITAR:
Mediante la duplicación de la fórmula para el trigamma función ( $ \displaystyle 4 \psi_{1}(2x) = \psi_{1}(x) + \psi_{1} \left(x + \frac{1}{2} \right) $),
$$ \begin{align} &\psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) \\ &= 4 \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) - 4 \psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right) \\ &= 6 \psi_{1} \left(\frac{1}{3} \right) - 6 \psi_{1} \left(\frac{2}{3} \right). \end{align}$$
Entonces
$$ \begin{align} \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} &= \frac{\sqrt{3} \pi}{18} \Bigg( \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) \Bigg) + \frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) \\ &+ \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) - 2 \zeta(3)\Bigg) - 2 \zeta (3). \end{align}$$
Entonces es de alguna manera muestra que $$-\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) = 312 \zeta(3) .$$
SEGUNDA EDICIÓN:
Mediante la duplicación de la fórmula para $\psi_{2}(x)$,
$$ \begin{align} &-\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) \\ &= -8 \psi_{2} \left(\frac{1}{3} \right) +\psi_{2} \left(\frac{2}{3} \right) + \psi_{2} \left(\frac{1}{3} \right) +\psi_{2} \left(\frac{2}{3} \right) - 8 \psi_{2} \left(\frac{2}{3} \right) + \psi_{2} \left(\frac{1}{3} \right) \\ &= -6 \psi_{2} \left(\frac{1}{3} \right) - 6 \psi_{2} \left(\frac{2}{3} \right) . \end{align}$$
Y el uso de la más general de la multiplicación de la fórmula,
$$ \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left( \frac{2}{3} \right) + \psi_{2}(1) = 27 \psi_{2} (1) .$$
Por lo tanto,
$$ -6 \psi_{2} \left(\frac{1}{3} \right) - 6 \psi_{2} \left(\frac{2}{3} \right) = -156 \psi_{2} (1) = 312 \zeta(3) .$$