$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\sum_{j = 2}^{\infty}\prod_{k = 1}^{j}{2k \over j + k - 1} = \pi:\ {\large ?}}$
\begin{align} &\color{#c00000}{\sum_{j = 2}^{\infty}\prod_{k = 1}^{j}{2k \over j + k - 1}} =\sum_{j = 2}^{\infty}2^{j}\, {1 \over j}\,{2 \over j + 1}\cdots{j \over 2j - 1}=\sum_{j = 2}^{\infty}2^{j}\,{j! \over \pars{2j - 1}!/\pars{j - 1}!} \\[3mm]&=\sum_{j = 2}^{\infty}2^{j}\, {\Gamma\pars{j + 1}\Gamma\pars{j} \over \Gamma\pars{2j}} =\sum_{j = 2}^{\infty}2^{j}\,j {\Gamma\pars{j}\Gamma\pars{j} \over \Gamma\pars{2j}} =\sum_{j = 2}^{\infty}2^{j}\,j\,{\rm B}\pars{j,j} \\[3mm]&=2\lim_{x \to 2}\bracks{% \partiald{}{x}\color{#00f}{\sum_{j = 2}^{\infty}x^{j}\,{\rm B}\pars{j,j}}} \end{align} donde $\ds{\Gamma\pars{z}}$ y $\ds{{\rm B}\pars{x,y} = \int_{0}^{1}t^{x - 1}\pars{1 - t}^{y - 1}\,\dd t = {\Gamma\pars{x}\Gamma\pars{y} \over \Gamma\pars{x + y}}}$ a Gamma y Beta Funciones, respectivamente. $\ds{\Re\pars{x} > 0, \Re\pars{y} > 0}$ . W $\ds{\Gamma\pars{z} = \Gamma\pars{z + 1}/z}$
\begin{align} &\color{#00f}{\sum_{j = 2}^{\infty}x^{j}\,{\rm B}\pars{j,j}}= \sum_{j = 2}^{\infty}x^{j}\,\int_{0}^{1}t^{j - 1}\pars{1 - t}^{j - 1}\,\dd t =\int_{0}^{1}\sum_{j = 2}^{\infty}\bracks{xt\pars{ 1- t}}^{j} \,{\dd t \over t\pars{1 - t}} \\[3mm]&=\int_{0}^{1}{\bracks{xt\pars{ 1- t}}^{2} \over 1 - xt\pars{1 - t}} \,{\dd t \over t\pars{1 - t}} =\int_{0}^{1}{x^{2}t\pars{ 1- t} \over 1 - xt\pars{1 - t}}\,\dd t \end{align}
\begin{align} &\color{#c00000}{\sum_{j = 2}^{\infty}\prod_{k = 1}^{j}{2k \over j + k - 1}} =2\ \overbrace{\int_{0}^{1}\bracks{-1 + {1 \over \bracks{1 - 2\pars{1 - t}t}^{2}}} \,\dd t}^{\ds{=\ {\pi \over 2}}} = \color{#00f}{\Large\pi} \end{align}
La última integral se evalúa trivialmente "completando el cuadrado" en el denominador.