Reescribir $\displaystyle a_n = \prod\limits_{k=1}^{n} \left(1+\frac{k}{n}\right)^{1/n} $
Ya, $\displaystyle \lim\limits_{n\to \infty} b_n^{1/n} = \lim\limits_{n\to \infty} \frac{b_{n+1}}{b_n}$ (es decir, si el límite existe)
Podemos escribir:
$\displaystyle \begin{align} \lim\limits_{n\to \infty} a_n =\lim\limits_{n\to \infty} \frac{\prod\limits_{k=1}^{n+1} \left(1+\frac{k}{n+1}\right)}{\prod\limits_{k=1}^{n} \left(1+\frac{k}{n}\right)} &= \lim\limits_{n \to \infty} \frac{\prod\limits_{k=1}^{n+1} (n+k+1)}{\prod\limits_{k=1}^{n} (n+k)}.\frac{(n+1)^{-(n+1)}}{n^{-n}} \tag{1}\\ &=\lim\limits_{n\to \infty} \frac{(n+2)\cdots(2n+2)}{(n+1)\cdots(2n)}.\frac{\left(1+\frac{1}{n}\right)^{-n}}{n+1} \tag{2}\\&= \lim\limits_{n\to \infty} 2(2n+1).\frac{\left(1+\frac{1}{n}\right)^{-n}}{n+1} \tag{3} \\&= \frac{4}{e}\end{align}$
2º Método:
Escribir $\displaystyle a_n = \left(\binom{2n}{n}\frac{n!}{n^n}\right)^{1/n}$
El uso de la identidad de $\displaystyle \sum\limits_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$ podemos hacer una solicitud de Cauchy-Schwarz Ineqality
$$\displaystyle (n+1)\binom{2n}{n} = \left(\sum\limits_{k=0}^{n} 1^2\right)\left(\sum\limits_{k=0}^{n} \binom{n}{k}^2\right) \ge \left(\sum\limits_{k=0}^{n} \binom{n}{k}\right)^2 = 4^n$$
Por lo tanto, $\displaystyle \frac{4^n}{n+1} \le \binom{2n}{n} \le 4^n \implies \lim\limits_{n \to \infty} \frac{4}{\sqrt[n]{n+1}} = \lim\limits_{n \to \infty} \binom{2n}{n}^{1/n} = 4$ (forma, el teorema del sándwich).
Ya, $\displaystyle \lim\limits_{n \to \infty} \frac{(n!)^{1/n}}{n} = e^{-1}$ obtenemos $\displaystyle \lim\limits_{n \to \infty} a_n = \frac{4}{e}$