1 votos

Si $f$ es una función real continua tal que $f(11) = 10$ y $\forall x, f(x)f(f(x)) = 1$ entonces encuentra $f(9)$

Si $f$ es una función real continua tal que $f(11) = 10$ y $\forall x, f(x)f(f(x)) = 1$ entonces $f(9) =$ ?

17voto

almagest Puntos 1994

$f(11)=10$ Así que $f(11)f(10)=1$ y por lo tanto $f(10)=1/10$ . Pero $f(x)$ es continua, por lo que $f(x_0)=9$ para algunos $10<x_0<11$ . Por lo tanto $f(x_0)f(9)=1$ Así que $f(9)=1/9$ .

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X