En mi opinión, el modelo que he descrito en realidad no se presta a conspirar, como parcelas funcionan mejor cuando no visualización de información compleja que es difícil de entender de otra manera (por ejemplo, interacciones complejas). Sin embargo, si desea mostrar una parcela de las relaciones en su modelo, usted tiene dos opciones principales:
- Mostrar una serie de parcelas de la relación bivariada entre cada uno de sus predictores de interés y su resultado, con un diagrama de dispersión de la materia prima de puntos de datos. La trama de error sobres alrededor de sus líneas.
- Ver el trazado de la opción 1, pero en lugar de mostrar la cruda puntos de datos, mostrar los puntos de datos con el resto de los predictores marginados (es decir, después de restar a cabo las contribuciones de los otros predictores)
El beneficio de la opción 1 es la que permite que el espectador para evaluar la dispersión de los datos en bruto. El beneficio de la opción 2 es la que se muestra la observación de errores que resultaron en el error estándar de la focal coeficiente que está mostrando.
He incluido el código R y un gráfico de cada una de las opciones a continuación, utilizando los datos de Prestige
conjunto de datos en car
paquete en R.
## Raw data ##
mod <- lm(income ~ education + women, data = Prestige)
summary(mod)
# Create a scatterplot of education against income
plot(Prestige$education, Prestige$income, xlab = "Years of education",
ylab = "Occupational income", bty = "n", pch = 16, col = "grey")
# Create a dataframe representing the values on the predictors for which we
# want predictions
pX <- expand.grid(education = seq(min(d$education), max(d$education), by = .1),
women = mean(d$women))
# Get predicted values
pY <- predict(mod, pX, se.fit = T)
lines(pX$education, pY$fit, lwd = 2) # Prediction line
lines(pX$education, pY$fit - pY$se.fit) # -1 SE
lines(pX$education, pY$fit + pY$se.fit) # +1 SE
## Adjusted (marginalized) data ##
mod <- lm(income ~ education + women, data = Prestige)
summary(mod)
# Calculate the values of income, marginalizing out the effect of percentage women
margin_income <- coef(mod)["(Intercept)"] + coef(mod)["education"] * Prestige$education +
coef(mod)["women"] * mean(Prestige$women) + residuals(mod)
# Create a scatterplot of education against income
plot(Prestige$education, margin_income, xlab = "Years of education",
ylab = "Adjusted income", bty = "n", pch = 16, col = "grey")
# Create a dataframe representing the values on the predictors for which we
# want predictions
pX <- expand.grid(education = seq(min(d$education), max(d$education), by = .1),
women = mean(d$women))
# Get predicted values
pY <- predict(mod, pX, se.fit = T)
lines(pX$education, pY$fit, lwd = 2) # Prediction line
lines(pX$education, pY$fit - pY$se.fit) # -1 SE
lines(pX$education, pY$fit + pY$se.fit) # +1 SE