$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[10px,#ffd]{\ds{\iint_{\mathbb{R}^2} \pars{1 - \expo{-xy} \over xy}^{2}\expo{-x^{2} - y^{2}}\dd x\,\dd y}} \\[5mm] = &\ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\ \overbrace{\pars{\int_{0}^{1}\expo{-xya}\dd a}} ^{\ds{\expo{-xy} - 1 \over -xy}}\ \overbrace{\pars{\int_{0}^{1}\expo{-xyb}\dd b}} ^{\ds{\expo{-xy} - 1 \over -xy}} \expo{-x^{2} - y^{2}}\dd x\,\dd y \\[5mm] = &\ \int_{0}^{1}\int_{0}^{1}\ \overbrace{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \exp\pars{-x^{2} - \bracks{a + b}xy - y^{2}}\dd x\,\dd y} ^{\ds{2\pi \over \root{4 - \pars{a + b}^{2}}}}\ \,\dd a\,\dd b \\[5mm] = &\ 2\pi\int_{0}^{1}\int_{0}^{1}{\dd a\,\dd b \over \root{4 - \pars{a + b}^{2}}} = \bbx{{4 \over 3}\,\pi\pars{3 - 3\root{3} + \pi}} \approx 3.9603 \end{align}