Factorización de la expresión $$\lim_{x\to 0} \frac{e^{2x}-1-2x}{x(e^{2x}-1)}$$ $$=\lim_{x\to 0} \frac{e^{2x}-(1+2x)}{(x)(e^x-1)(e^x+1)}$$ ¿Cómo debo proceder?
Respuestas
¿Demasiados anuncios?$$\lim_{x\to 0} \frac{e^{2x}-1-2x}{x(e^{2x}-1)}$$ $$=\lim_{x\to 0} \frac{e^{2x}-(1+2x)}{(x)(e^x-1)(e^x+1)}$$ $$=\lim_{x\to 0} \frac{1}{e^x+1} \lim_{x\to 0} \frac{2 e^{2x} - 2 }{e^{x}-1+ x e^{x}}(\text{using L'hospital rule}) $$ $$=\frac{1}{2} \lim_{x\to 0} \frac{4 e^{2x}}{2 e^{x} + x e^{x}} (\text{ again using L'hospital rule}) $$ $$=1 $$
Otro enfoque que utiliza la regla de Hopital:
$$\lim_{x \to 0}\left(- \frac{2}{e^{2 x} - 1} + \frac{1}{x}\right)= \lim_{x \to 0} \frac{- 2 x + e^{2 x} - 1}{x \left(e^{2 x} - 1\right)}$$
$$\lim_{x \to 0} \frac{- 2 x + e^{2 x} - 1}{x \left(e^{2 x} - 1\right)} \stackrel{\,\,(0/0) \\\text{Hopital}}{=} \lim_{x \to 0} \frac{2 e^{2 x} - 2}{2 x e^{2 x} + e^{2 x} - 1}$$
$$\left(2 \lim_{x \to 0} \frac{e^{2 x} - 1}{2 x e^{2 x} + e^{2 x} - 1}\right)\stackrel{\,\,(0/0) \\\text{Hopital}}{=} 2 \lim_{x \to 0} \frac{2 e^{2 x}}{4 x e^{2 x} + 4 e^{2 x}}=\lim_{x \to 0} \frac{4e^{2x}}{4e^{2x}\left(x + 1\right)}=1$$