$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ La "intersección" viene dada por $\ds{16 = x^{2} + y^{2} + y^{2} = x^{2} + 2y^{2}\ \imp 1 = {x^{2} \over \color{#f00}{4}^{2}} + {y^{2} \over \pars{\color{#f00}{2\root{2}}}^{2}}}$ . El área buscada viene dada por $\ds{\pi \times \color{#f00}{4} \times \color{#f00}{2\root{2}} = 8\pi\root{2}}$ que da como resultado $$ \pars{8\pi\root{2}}\pars{-6} = \color{#f00}{-48\pi\root{2}} $$