En $$\sum_{n=1}^{\infty}\ln \left(1+\frac{(-1)^n}{2^n}\right)$$ puede utilizar la prueba de series alternas. En concreto, la suma es igual a $$\sum_{n=1}^{\infty}\left(-1\right)^{n}\ln\left(\left(1+\frac{\left(-1\right)^{n}}{2^{n}}\right)^{\left(-1\right)^{n}}\right)$$ Entonces basta con demostrar que $$\ln\left(\left(1+\frac{\left(-1\right)^{n}}{2^{n}}\right)^{\left(-1\right)^{n}}\right) > \ln\left(\left(1+\frac{\left(-1\right)^{n+1}}{2^{n+1}}\right)^{\left(-1\right)^{n+1}}\right)$$
Exponenciando ambos lados se obtiene $$\left(1+\frac{\left(-1\right)^{n}}{2^{n}}\right)^{\left(-1\right)^{n}} > \left(1+\frac{\left(-1\right)^{n+1}}{2^{n+1}}\right)^{\left(-1\right)^{n+1}}$$
Divídelo en dos casos: $n$ impar y $n$ incluso. Para $n$ impar, la desigualdad se simplificaría a $$\left(1-\frac{1}{2^{n}}\right)^{-1} > \left(1+\frac{1}{2^{n+1}}\right)^{1}$$
Esto es fácil de demostrar ya que $\left(1-\frac{1}{2^{n}}\right)\left(1+\frac{1}{2^{n+1}}\right) < 1-\frac{1}{2^{n+1}} < 1$ . Del mismo modo para $n$ incluso, la desigualdad sería $$\left(1+\frac{1}{2^{n}}\right)^{1} > \left(1-\frac{1}{2^{n+1}}\right)^{-1}$$
Esto también es fácil de demostrar, ya que $\left(1+\frac{1}{2^{n}}\right)\left(1-\frac{1}{2^{n+1}}\right) = 1+\frac{1}{2^{x}}\left(\frac{1}{2}-\frac{1}{2^{\left(n+1\right)}}\right) > 1$ . Por lo tanto, por la prueba de la serie alterna, la suma convergería.