Toda la cuestión está en el título: ¿es la equivalencia $$(\forall (x,y) \in F\times G, \phi(x) \lor \psi(y) ) \Leftrightarrow (\forall x\in F, \phi(x)) \lor (\forall y\in G, \psi(y))$$ verdadero (donde $\phi(x)$ (resp. $\psi(y)$ ) es una fórmula en la que $y$ (resp. $x$ ) no aparece)?
Me gustaría decir que sí, pero no estoy seguro: ¿tenemos $$(\forall x\in F (\phi(x)\lor \psi(y))) \Leftrightarrow ((\forall x\in F, \phi(x))\lor \psi(y))$$ En caso afirmativo, podría decir:
$$\begin{aligned} (\forall (x,y) \in F\times G, \phi(x) \lor \psi(y) )&\Leftrightarrow (\forall y\in F(\forall x\in G (\phi(x)\lor \psi(y))) \\ &\Leftrightarrow (\forall y\in F((\forall x\in G, \phi(x))\lor \psi(y)) \\&\Leftrightarrow (\forall x\in F, \phi(x)) \lor (\forall y\in G, \psi(y)) \end{aligned}$$