$$ \int e^{ax}\cos(bx)\,\mathrm dx = \frac1{a}e^{ax}\cos(bx) + \frac{b}{a^2}e^{ax}\sin(bx) - \frac{b^2}{a^2}\int e^{ax}\cos(bx)\,\mathrm dx$$
$$\left(1 + \frac{b^2}{a^2}\right)\int e^{ax}\cos(bx)\,\mathrm dx = \frac{1}{a}e^{ax}\cos(bx) + \frac{b}{a^2}e^{ax}\sin(bx) + C$$
¿Dónde está el $1$ en $\displaystyle \left(1 + \frac{b^2}{a^2}\right)$ ¿De dónde viene?