2 votos

Condensador conmutado Resistencia

Tengo algunas dudas básicas sobre las resistencias de condensador conmutadas:

enter image description here

Con este circuito obtenemos una resistencia equivalente igual a (Referencia: Wikipedia ): enter image description here

Donde f es la frecuencia de las señales de reloj que abren y cierran S1 y S2.

Mis dudas son:

  1. Cuando pasamos de S1 a S2 o viceversa, Cs tiene una determinada carga y por tanto una determinada tensión, y en ese instante se le aplica una tensión diferente. Es como cortocircuitar dos fuentes de tensión con tensiones diferentes. ¿Dónde va el deltaQ (diferencia de carga), puesto que no hay resistencias?

  2. Resistencia significa potencia disipada. Así que si obtenemos el comportamiento de una resistencia, debería haber disipación de potencia. Pero en este circuito S1 y S2 son ideales, y también Cs. ¿Cuál es la explicación de esto?

0voto

dahulius Puntos 11

Tienes razón, si suponemos que la entrada es conducida por un ideal fuente de tensión y que tenemos ideal entonces el circuito no puede analizarse utilizando nuestras definiciones estándar de los elementos del circuito. Conexión de dos fuentes de tensión con diferentes tensiones en paralelo resulta en un circuito inválido porque viola nuestra definición de lo que significa "paralelo".

En el instante posterior al cierre del interruptor la tensión en el condensador debe ser exactamente lo que era en el instante anterior al cierre del interruptor. Un cambio instantáneo de tensión a través de un condensador requeriría una corriente infinita, lo que una vez más hace que el circuito sea inválido e imposible de analizar.

No cabe duda de que en un circuito de este tipo se consume energía, pero se consume en las resistencias de los interruptores del mundo real y en las fuentes de tensión del mundo real, y no en los condensadores.

0voto

LvW Puntos 6292

El problema de algunos artículos y contribuciones en Internet sobre circuitos SC es que la simulación SC de una resistencia no se explica correctamente. Tenga en cuenta que el circuito simple mostrado con dos interruptores y un condensador puede asumir el papel de una resistencia óhmica sólo si el nodo más a la derecha de S2 está conectado (a) a tierra o (b) a tierra virtual o (c) a un condensador mucho mayor que el condensador conmutado.

En cualquier caso, debe ser posible que el condensador conmutado esté descargado cuando S2 esté cerrado y, por tanto, listo para recibir la siguiente tensión muestreada cuando S2 esté abierto y S1 cerrado.

Como ejemplo, la contribución wiki muestra cómo se realiza un integrador SC. Aquí se aprovecha el principio de la masa virtual y la carga se transfiere al condensador en el bucle de realimentación.

0voto

Jake Hertz Puntos 3
  1. Consideremos la situación en la que Vin > Vout, y ambas se modelan mediante fuentes de tensión ideales.

Switched Cap Resistor Modeled with Ideal Voltage Sources

Cuando S1 se cierra, el condensador se carga hasta Vin y obtiene una carga de Qvin = C*Vin almacenada en sus placas.

When Switch 1 is Closed

Ahora, cuando S1 se abre y S2 se cierra, inicialmente el condensador se carga a Vin, que es mayor que Vout, pero ahora también está conectado a Vout. En general, una fuente de voltaje ideal hará todo lo posible para asegurarse de que está produciendo su voltaje dado. En este caso, la única forma de que ese condensador baje su tensión hasta igualar a Vout es que salga suficiente carga de sus placas, y el único camino para esta corriente es hundirse a través de la fuente de tensión ideal Vout. Vout aceptará esta corriente porque quiere establecer su tensión en el nodo conectado a toda costa.

enter image description here

Cuando se establece esta tensión, la carga en el condensador es ahora Qout = C*Vout.

El valor de la carga total transferida entre Vin y Vout es entonces (Qvin - Qvout) = C Vin - C Vout = C * (Vin-Vout).

  1. Dado que estos componentes son ideales, el modelo de los mismos no tendrá una disipación de potencia (el mundo real tendrá impedancias parásitas que disiparán potencia). La razón por la que se considera una "resistencia" conmutada es porque se comporta como una resistencia en el sentido de que una diferencia de tensión a través del circuito tendrá una salida de corriente determinista y lineal.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X