- Sea $f(x) = x\cos x$ para $x\in\mathbb R$ . Entonces
$\quad$ (A) Existe una secuencia $x_n\to -\infty$ tal que $f(x_n)\to 0$ .
$\quad$ (B) Existe una secuencia $x_n \to \infty$ tal que $f(x_n)\to\infty.$
$\quad$ (C) Existe una secuencia $x_n \to\infty$ tal que $f(x_n)\to-\infty$ .
$\quad$ (D) $f$ es una función continua uniforme.
Si tomo la secuencia $-n$ La primera opción es cierta. ¿Y las otras opciones?
Merci.