$$ \sum_{k\geq 1}x^{k-1}=\frac{1}{1-x}\Rightarrow \sum_{k\geq 1}\frac{1}{2^kk^2}=-\int_0^{\frac{1}{2}} \frac{\ln (1-x)}{x}\,dx$$
Observe que:
$$\begin{aligned}\int_0^{\frac{1}{2}} \frac{\ln (1-x)}{x}\,dx\overset{x\to \frac{x}{2}}=\int_0^1 \frac{\ln (1-\frac{x}{2})}{x}\,dx \overset{ \text{IBP}}=\int_0^1 \frac{\ln x}{2-x}\,dt \overset{x\to 1-x}=\int_0^1 \frac{\ln (1-x)}{1+x}\,dx\end{aligned}$$
Ahora considere la posibilidad de:
$$f(t)=\int_0^1 \frac{\ln (1-tx)}{1+x}\,dx$$ We want $-f(1)$. Differentiate: $$\begin{aligned} f'(t) &= \int_0^1 \frac{x\,dx}{(tx-1)(1+x)} \\&= \int_0^1 \frac{dx}{tx-1}+\int_0^1 \frac{dx}{(t+1)(1+x)}-\int_0^1 \frac{t\,dx}{(tx-1)(t+1)}\\& =\frac{\ln (1-t)}{t}+\frac{\ln 2}{t+1} -\frac{\ln (1-t)}{1+t}\end{aligned}$$
Por lo tanto:
$$f(1) =\int_0^1 \frac{\ln (1-t)}{t}\,dt+\int_0^1\frac{\ln 2}{t+1}\,dt-\underbrace{\int_0^1 \frac{\ln (1-t)}{1+t}\,dt}_{f(1)}$$
$$\Rightarrow -f(1) =\frac{1}{2}\left(-\int_0^1 \frac{\ln (1-t)}{t}\,dt-\int_0^1\frac{\ln 2}{t+1}\right)\,dt=\frac{\pi^2}{12}-\frac{\ln^2 2}{2}$$