Estoy tratando de analizar esta prueba en el libro de Hungerford:
Cuando se mete en la informática esto:
$$A =\prod_{\substack{j<k\\ j,k \neq c,d}}^{}(i_j-i_k)$$
¿Qué significa esto?
- ¿Significa esto que $j<k$ y $j\neq c$ et $k\neq d$ o
- ¿Significa esto que $j<k$ y $j\neq c$ et $k\neq d$ et $h\neq d$ et $k\neq c$ ?
He calculado los índices que obtendría en ambos casos en un ejemplo sencillo en el que $c=3$ , $d=5$ et $j=9$ y para el primer caso, obtendría los siguientes índices:
$$\begin{array}{cccccccc} \begin{array}{cc} 1 & 2 \\ \end{array} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{cc} 1 & 3 \\ \end{array} & \begin{array}{cc} 2 & 3 \\ \end{array} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{cc} 1 & 4 \\ \end{array} & \begin{array}{cc} 2 & 4 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{cc} 1 & 6 \\ \end{array} & \begin{array}{cc} 2 & 6 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 6 \\ \end{array} & \begin{array}{cc} 5 & 6 \\ \end{array} & \text{} & \text{} & \text{} \\ \begin{array}{cc} 1 & 7 \\ \end{array} & \begin{array}{cc} 2 & 7 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 7 \\ \end{array} & \begin{array}{cc} 5 & 7 \\ \end{array} & \begin{array}{cc} 6 & 7 \\ \end{array} & \text{} & \text{} \\ \begin{array}{cc} 1 & 8 \\ \end{array} & \begin{array}{cc} 2 & 8 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 8 \\ \end{array} & \begin{array}{cc} 5 & 8 \\ \end{array} & \begin{array}{cc} 6 & 8 \\ \end{array} & \begin{array}{cc} 7 & 8 \\ \end{array} & \text{} \\ \begin{array}{cc} 1 & 9 \\ \end{array} & \begin{array}{cc} 2 & 9 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 9 \\ \end{array} & \begin{array}{cc} 5 & 9 \\ \end{array} & \begin{array}{cc} 6 & 9 \\ \end{array} & \begin{array}{cc} 7 & 9 \\ \end{array} & \begin{array}{cc} 8 & 9 \\ \end{array} \\ \end{array}$$
Para el segundo caso, obtendría los siguientes índices:
$$\begin{array}{cccccccc} \begin{array}{cc} 1 & 2 \\ \end{array} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{c} \diamond \;\diamond \\ \end{array} & \begin{array}{c} \diamond \;\diamond \\ \end{array} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{cc} 1 & 4 \\ \end{array} & \begin{array}{cc} 2 & 4 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \text{} & \text{} & \text{} & \text{} \\ \begin{array}{cc} 1 & 6 \\ \end{array} & \begin{array}{cc} 2 & 6 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 6 \\ \end{array} & \begin{array}{c} \diamond \;\diamond \\ \end{array} & \text{} & \text{} & \text{} \\ \begin{array}{cc} 1 & 7 \\ \end{array} & \begin{array}{cc} 2 & 7 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 7 \\ \end{array} & \begin{array}{c} \diamond \;\diamond \\ \end{array} & \begin{array}{cc} 6 & 7 \\ \end{array} & \text{} & \text{} \\ \begin{array}{cc} 1 & 8 \\ \end{array} & \begin{array}{cc} 2 & 8 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 8 \\ \end{array} & \begin{array}{c} \diamond \;\diamond \\ \end{array} & \begin{array}{cc} 6 & 8 \\ \end{array} & \begin{array}{cc} 7 & 8 \\ \end{array} & \text{} \\ \begin{array}{cc} 1 & 9 \\ \end{array} & \begin{array}{cc} 2 & 9 \\ \end{array} & \begin{array}{c} \text{$\bullet$ $\bullet$} \\ \end{array} & \begin{array}{cc} 4 & 9 \\ \end{array} & \begin{array}{c} \diamond \;\diamond \\ \end{array} & \begin{array}{cc} 6 & 9 \\ \end{array} & \begin{array}{cc} 7 & 9 \\ \end{array} & \begin{array}{cc} 8 & 9 \\ \end{array} \\ \end{array}$$
Dónde $\bullet \;\bullet$ et $\diamond \;\diamond$ son los pares de índices eliminados. Mi conjetura es que se refiere al segundo caso porque parece que sólo de esta manera nos permitiría tener $\sigma(A)=A$ ya que no $(i_j - i_k)$ se modificaría. ¿Es correcto mi razonamiento?