$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\lim_{x \to \infty}\bracks{{1 \over x}\int_{0}^{x}\verts{\sin\pars{s}}
\,\dd s}:\ {\large ?}}$.
$$
\int_{0}^{x}\verts{\sin\pars{s}}\,\dd s
=
x\verts{\sin\pars{x}} - \int_{0}^{x}s\sgn\pars{\sin\pars{s}}\cos\pars{s}\,\dd s
=x\verts{\sin\pars{x}} - \int_{0}^{x}\sgn\pars{\sin\pars{s}}\varphi'\pars{s}\,\dd s
$$
donde $\ds{\varphi\pars{s} = \int_{0}^{s}t\cos\pars{t}\,\dd t}$.
\begin{align}
\int_{0}^{x}\verts{\sin\pars{s}}\,\dd s&=
x\verts{\sin\pars{x}} - \sgn\pars{\sin\pars{x}}\varphi\pars{x}
+
\int_{0}^{x}\varphi\pars{s}\bracks{2\delta\pars{\sin\pars{s}}\cos\pars{s}}\,\dd s
\\[3mm]&=
x\verts{\sin\pars{x}} - \sgn\pars{\sin\pars{x}}\varphi\pars{x}
+
2\int_{0}^{x}\varphi\pars{s}\cos\pars{s}
\sum_{n = -\infty}^{\infty}\delta\pars{s - n\pi}\,\dd s
\\[3mm]&=
x\verts{\sin\pars{x}} - \sgn\pars{\sin\pars{x}}\varphi\pars{x}
+
2\sum_{n = 1}^{\infty}\pars{-1}^{n}\varphi\pars{n\pi}\Theta\pars{x - n\pi}
\end{align}
Sin embargo,
$$
\varphi\pars{s} = s\sin\pars{s} - \int_{0}^{s}\sin\pars{t}\,\dd t
= s\sin\pars{s} + \cos\pars{s} - 1\quad\imp\quad\varphi\pars{n\pi}
= \pars{-1}^{n} - 1
$$
\begin{align}\color{#0000ff}{\large%
\int_{0}^{x}\verts{\sin\pars{s}}\,\dd s
=
2\sin^{2}\pars{x \over 2}\sgn\pars{\sin\pars{x}}
+
4\sum_{n = 0}^{\infty}\Theta\pars{{x \over \pi} - 2n - 1}}
\end{align}
\begin{align}\color{#0000ff}{\large%
\lim_{x \to \infty}\bracks{{1 \over x}\int_{0}^{x}\verts{\sin\pars{s}}\,\dd s}}
&=
4\lim_{x \to \infty}\bracks{{1 \over x}\sum_{n = 0}^{\infty}
\Theta\pars{{x - \pi \over 2\pi} - n}}
\\[3mm]&=
4\lim_{x \to \infty}\bracks{{1 \over 2\pi x + \pi}\sum_{n = 0}^{\infty}
\Theta\pars{x - n}}
=
\color{#0000ff}{\large{2 \over \pi}}
\end{align}