Tengo un conjunto de datos en el que la variable que me gustaría utilizar como efecto aleatorio sólo tiene una única observación para algunos niveles. Basándome en las respuestas a preguntas anteriores, he deducido que, en principio, esto puede estar bien.
¿Puedo ajustar un modelo mixto con sujetos que sólo tienen 1 observación?
Modelo de interceptos aleatorios - una medición por sujeto
Sin embargo, en el segundo enlace, la primera respuesta dice:
"...asumiendo que no estás usando un modelo mixto lineal generalizado GLMM donde en ese caso entran en juego cuestiones de dispersión excesiva"
Estoy considerando utilizar un GLMM, pero no entiendo muy bien cómo afectarán al modelo los niveles de efectos aleatorios con observaciones únicas.
He aquí un ejemplo de uno de los modelos que intento ajustar. Estoy estudiando las aves, y me gustaría modelar los efectos de la población y la temporada en el número de paradas durante la migración. Me gustaría utilizar el individuo como efecto aleatorio, porque para algunos individuos tengo hasta 5 años de datos.
library(dplyr)
library(lme4)
pop <- as.character(c("BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "BF", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "MA", "NU", "NU", "NU", "NU", "NU", "NU", "NU", "NU", "NU", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA", "SA"))
id <- "2 2 4 4 7 7 9 9 10 10 84367 84367 84367 84368 84368 84368 84368 84368 84368 84369 84369 33073 33073 33073 33073 33073 33073 33073 33073 33073 80149 80149 80149 80150 80150 80150 57140 57141 126674 126677 126678 126680 137152 137152 137157 115925 115925 115925 115925 115925 115925 115925 115925 115926 115926 115926 115926 115926 115926 115927 115928 115929 115929 115929 115930 115930 115930 115930 115931 115931 115931 115932 115932 115932"
id <- strsplit(id, " ")
id <- as.numeric(unlist(id))
year <- "2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2009 2010 2010 2009 2010 2010 2011 2011 2012 2009 2010 2009 2009 2010 2010 2011 2011 2012 2012 2013 2008 2008 2009 2008 2008 2009 2008 2008 2013 2013 2013 2013 2014 2015 2014 2012 2013 2013 2014 2014 2015 2015 2016 2012 2013 2013 2014 2014 2015 2013 2012 2012 2013 2013 2012 2013 2013 2014 2013 2014 2014 2013 2014 2014"
year <- strsplit(year, " ")
year <- as.numeric(unlist(year))
season <- as.character(c("fall", "spring", "fall", "spring", "fall", "spring", "fall", "spring", "fall", "spring", "fall", "fall", "spring", "fall", "fall", "spring", "fall", "spring", "spring", "fall", "spring", "fall", "spring", "fall", "spring", "fall", "spring", "fall", "spring", "spring", "fall", "spring", "spring", "fall", "spring", "spring", "fall", "fall", "fall", "fall", "fall", "fall", "fall", "spring", "fall", "fall", "fall", "spring", "fall", "spring", "fall", "spring", "spring", "fall", "fall", "spring", "fall", "spring", "spring", "fall", "fall", "fall", "fall", "spring", "fall", "fall", "spring", "spring","fall", "fall", "spring", "fall", "fall", "spring"))
stops <- "0 0 0 0 0 0 1 0 2 1 1 0 0 3 2 0 1 1 0 1 1 2 0 1 0 2 0 4 0 0 2 1 1 2 5 2 1 0 9 6 2 3 4 7 2 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0"
stops <- strsplit(stops, " ")
stops <- as.numeric(unlist(stops))
stopdata <- data.frame(pop = pop, id = id, year = year, season = season, stops = stops, stringsAsFactors = FALSE)
stopdata <- group_by(stopdata, pop, id)
summary1 <- summarise(stopdata, n.years = length(year))
table(summary1$n.years)
Hay 27 individuos. 9 individuos tienen una sola observación. 18 individuos tienen de 2 a 9 observaciones.
¿De qué hay que preocuparse si 1/3 de los niveles de efectos aleatorios sólo tienen una observación?
Lo he estado considerando:
Opción 1: GLMM como se ha descrito anteriormente
stops.glmm <- glmer(stops ~ pop + season + (1|id), data=stopdata, family = poisson)
Opción 2: Modelo lineal generalizado ponderado GLM utilizando las medias de los individuos con observaciones múltiples
aggfun <- function(data, idvars=c("pop", "season", "id"), response){
#select id variables, response variable, and year
sub1 <- na.omit(data[,c(idvars, "year", response)])
#aggregate for mean response by year
agg1 <- aggregate(sub1[names(sub1) == response],by=sub1[idvars],FUN=mean)
#sample size for each aggregated group
aggn <- aggregate(sub1[response],by=sub1[idvars],FUN=length)
#rename sample size column
names(aggn)[4] <- "n"
agg2 <- merge(agg1, aggn)
agg2}
#Create weighted dataset
stops.weight <- aggfun(data = stopdata, response = "stops")
stops.weight$stops <- round(stops.weight$stops)
#Weighted GLM
stops.glm <- glm(stops~pop + season, data=stops.weight, family = poisson, weights = n)