Deje $w_{j}\ge 0,j=1,2,3,\cdots,n,n\ge 2$ y tal $$w_{1}+w_{2}+\cdots+w_{n}=1$$ para cualquier $p_{j}\in[0,1),j=1,2,3,\cdots,n)$ tienen $$\sum_{j=1}^{n}\dfrac{w_{j}}{1-p_{j}}\cdot\sum_{j=1}^{n}\dfrac{w_{j}}{1+p_{j}}\le \left(\sum_{j=1}^{n}\dfrac{w_{j}}{1-p^2_{j}}\right)^2$$
este problema es de la escuela secundaria Shang hai in china test.maybe this problem can use integral inequality to solve it? or others.Thank you