Supongamos que $$ X=\left\{x \in C^2(\Bbb R,\Bbb R):x(t+T)=x(t)\; \text{for all}\;t \in \Bbb R \right\}, $$ $$ Y=\left \{h \in C(\Bbb R,\Bbb R):h(t+T)=h(t)\;\text{for all}\;t \in \Bbb R \right \} ,$$ y definir el operador $ A:X\rightarrow Y$ por $$Aw=w''+3w'$$ Quiero demostrar que $A$ es compacto y creo que necesita el "teorema de Arzela-Ascoli" .
prueba. $ \text{Since}\; X \;\text{and}\; Y\; \text{are bounded by continuity and periodicity, for arbitrary sequence}\{w_n\}\subset X, |Aw_n(t)|\text{ is uniformly bounded, and by Mean value theorem and } |Aw_n(t)-Aw_n(s)|\le|w_n''(t)-w_n''(s)|+3|w_n'(t)-w_n'(s)|,\{w_n\} \text{ is equicontinuous.}$ Así, $\text{there is a convergent subsequence of } \{Aw_n\}$ .
¿Es correcta la prueba?