1 votos

perímetro máximo y mínimo del triángulo para circunradio e inradio fijos

En esta pregunta: construir-triángulo-dado-inradio-y-circunradio :

Si conocemos el radio interior $r$ y el circunradio $R$ de un triángulo, no podemos arreglar el triángulo. Sin embargo, ¿Cuál es el perímetro máximo y mínimo de estos triángulos?

Podemos arreglar el $OI=\sqrt{2Rr-r^2}$ . En el conjunto de coordenadas circuncirle a ser $x^2+y^2=R^2$ , incirle ser $(x-OI)^2+y^2=r^2$ . Para Point $A(R \cos\theta,R \sin\theta)$ en la circunferencia , podemos calcular la línea tangente de la circunferencia interior $AB$ y $AC$ , $B,C$ también están en la circunferencia. y $BC$ es también la línea tangente del círculo interior.

Pero el cálculo es muy complicado. ¿Hay algún otro método?

1voto

mdm Puntos 3025

$$(a-b)^2(b-c)^2(c-a)^2=-4r^2\bigl((s^2)^2-2(2R^2+10Rr-r^2)s^2+r(4R+r)^3\bigr)\geqslant0$$

$$2R^2+10Rr-r^2-2(R-2r)\sqrt{R^2-2Rr}\leqslant s^2\leqslant2R^2+10Rr-r^2+2(R-2r)\sqrt{R^2-2Rr}.$$ Por Kuing.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X