1 votos

Cómo hallar esta integral sobre un anillo

Tengo $v=\sum_{g\in G_k} g v_r\in W^{1,N}_{0,G_k}(\Omega_r)\setminus\{0\}$ .

$$\Omega_r=\{x\in \mathbb{R}^N, r<|x|<r+1\}, r>0, N\geq 2, N\neq 3$$ $$O_k=\{g\in O(2): g(x)=\left(x_1 \cos\frac{2\pi l}{k}+x_2\sin\frac{2\pi l}{k},-x_1\sin\frac{2\pi l}{k}+x_2\cos\frac{2\pi l}{k} \right)$$

Dónde $O(2)$ Es el grupo de $2\times 2$ matrices ortogonales, $x=(x_1,x_2)\in\mathbb{R}^2$ y $l\in \{0,\ldots, k-1\}$

y $G_k=O_k\times O(N-2), 1\leq k <\infty$ .

$W^{1,N}_{0,G_k}(\Omega_r)=\{u\in W^{1,N}_0(\Omega_r): u(x)=u(g^{-1}x),\, \text{for all} \, g\in G_k\}$

$v_r\in W^{1,N}_0(B_{\delta,r})\setminus\{0\}$ donde $B_{\delta,r}=B_\delta(((2r+1)/2,0,\ldots,0))\subset \Omega_r$ satisface $$ g^i B_{\delta,r}\cap g^j B_{\delta,r}=\emptyset,\, for all \, g^i\in G_k, i\neq j, i,j=0,1,...,k-1 $$

Mi pregunta es por qué $\int_{\Omega_r}|\nabla v|^N dx=\int_{\Omega_r} |\nabla v_r|^N dx $

0voto

Anthony Shaw Puntos 858

Supongamos que $f$ y $g$ tienen apoyos disjuntos. Existen $3$ casos:

  1. $f(x)\ne0$ y $g(x)=0$
  2. $f(x)=0$ y $g(x)\ne0$
  3. $f(x)=0$ y $g(x)=0$

En cada caso, $|f(x)+g(x)|=|f(x)|+|g(x)|$ y $|f(x)||g(x)|=0$ .
Aplique el Teorema Binomial para obtener $$ \begin{align} |f(x)+g(x)|^n &=(|f(x)|+|g(x)|)^n\\ &=\sum_{k=0}^n\binom{n}{k}|f(x)|^k|g(x)|^{n-k}\\ &=|f(x)|^n+|g(x)|^n \end{align} $$ ya que todos los términos excepto $k=0$ y $k=n$ contienen un producto de $|f(x)||g(x)|$ por lo que esos términos son $0$ .

Obsérvese que el cambio de variables se debe a las rotaciones, pero el determinante de una matriz de rotación es $1$ por lo que no afectan al valor de la integral.

Por lo tanto, $$ \begin{align} \int_{\Omega_r}|\nabla v(x)|^N\,\mathrm{d}x &=\int_{\Omega_r}\left|\sum_{g\in G_k}\nabla v_r(g(x))\right|^N\,\mathrm{d}x\\ &=\int_{\Omega_r}\sum_{g\in G_k}|\nabla v_r(g(x))|^N\,\mathrm{d}x\\ &=\int_{\Omega_r}\sum_{g\in G_k}|\nabla v_r(x)|^N\,\mathrm{d}g^{-1}(x)\\ &=\int_{\Omega_r}\sum_{g\in G_k}|\nabla v_r(x)|^N\det(g)^{-1}\,\mathrm{d}x\\ &=k\int_{\Omega_r}|\nabla v_r(x)|^N\,\mathrm{d}x \end{align} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X