Me gustaría que alguien me verificara este ejercicio. Por favor.
Encuentra el siguiente límite:
$\lim\limits_{n \to \infty}\left(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{3n}\right)$
$=\lim\limits_{n \to \infty}\left(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{n+2n}\right)$
$=\lim\limits_{n \to \infty}\sum\limits_{k=1}^{2n} \dfrac{1}{n+k}$
$=\lim\limits_{n \to \infty}\sum\limits_{k=1}^{2n} \dfrac{1}{n\left(1+\frac{k}{n}\right)}$
$=\lim\limits_{n \to \infty}\sum\limits_{k=1}^{2n}\left(\dfrac{1}{1+\frac{k}{n}}\cdot\dfrac{1}{n}\right)$
$=\displaystyle\int_{1+0}^{1+2} \frac{1}{x} \,dx$
$=\displaystyle\int_{1}^{3} \frac{1}{x} \,dx$
$=\big[\ln|x|\big] _{1}^3$
$=\ln|3|-\ln|1|$
$=\ln(3)-\ln(1)$
$=\ln(3)$