Sugerencia \ \overbrace{x = \color{#0a0}{-1\!+\!9}(a\!+\!5(b\!+\!4c))}^{\text{by iterated division}}\, así que \overbrace{\color{#90f}{\bmod 5}\Rightarrow a\equiv 3}^{\large\color{#90f}{x\ \equiv\ 1}};\ \overbrace{\color{#c00}{\bmod 4}\Rightarrow b\equiv 0}^{\large\color{#c00}{x\ \equiv\ 2}},\, así que \ \bbox[5px,border:1px solid #c00]{x= 26\!+\!180c}
Observación Lo que falló en tu método es que no aplicaste correctamente el Fórmula CRT (o has intentado incorrectamente generalizar la fórmula para dos congruencias). Aplicando la fórmula enlazada se obtiene
\!\begin{align} x\,&\equiv\, \color{#c00}{2\pmod{4}}\ \ \ \ {\rm and}\, \ \ \ x\equiv \color{#0a0}{-1\pmod{9}}\ \ \ \ \ {\rm and}\,\ \ \ \ \ x\equiv \color{#90f}{1\pmod{5}}\\[.5em] \iff x\ &\equiv\, \color{#c00}2(9\cdot 5)\overbrace{((9\cdot 5)^{-1}\!\color{#c00}{\bmod 4)}}^{\large\! 1/45\ \equiv\ \color{#c00}{1/1}\ } \color{#0a0}{-1} (4\cdot 5)\overbrace{((4\cdot 5)^{-1}\!\color{#0a0}{\bmod 9)}}^{\large 1/20\ \equiv\ 10/2\ \equiv\ \color{#0a0}{5/1}} + \color{#90f}1(4\cdot 9)\overbrace{((4\cdot 9)^{-1}\!\color{#90f}{\bmod 5)}}^{\large\! 1/36\ \equiv\ \color{#90f}{1/1}}\\[.5em] &\equiv\, \color{#c00}2(9\cdot 5)\,(\color{#c00}{1/1}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \color{#0a0}{-1} (4\cdot 5)\,(\color{#0a0}{5/1}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \:\! + \color{#90f}1(4\cdot 9)\,(\color{#90f}{1/1})\\[.5em] &\equiv\ \color{#c00}{90}\ \ - \ \ \color{#0a0}{100}\ \ +\ \ \color{#90f}{36}\ \bbox[5px,border:1px solid #c00]{\equiv\, 26\pmod{\!180}} \end{align}
Véase esta respuesta para una explicación intuitiva de la génesis de la fórmula CRT anterior (que le ayudará a recordarla correctamente y a aplicarla con eficacia).