1 votos

Evalúa: $S=\sum_{j=1}^{\infty}\prod_{k=1}^{j}\frac{2k}{j+k+1}$

Evalúa esta suma: $$S=\sum_{j=1}^{\infty}\prod_{k=1}^{j}\frac{2k}{j+k+1}$$

Expande la suma:

$$S=\prod_{k=1}^{1}\frac{2k}{k+2}+\prod_{k=1}^{2}\frac{2k}{k+3}+\prod_{k=1}^{3}\frac{2k}{k+4}+\cdots$$

$$S=\frac{2}{3}+\frac{2}{4}\cdot\frac{4}{5}+\frac{2}{5}\cdot\frac{4}{6}\cdot\frac{6}{7}+ \frac{2}{6}\cdot\frac{4}{7}\cdot\frac{6}{8}\cdot\frac{8}{9}+\cdots+\frac{2^nn!}{(2n)!\div (n+1)!}$$ No sé qué hacer ahora...

3voto

thinkingeye Puntos 11

Creo que su expansión del producto es incorrecta.

Lo entiendo:

$$\sum_{j=1}^{\infty}\prod_{k=1}^{j}\frac{2k}{j+k+1}=\sum_{j=1}^{\infty}\frac{2^j j!}{\frac{(2j+1)!}{(j+1)!}}=\sum_{j=1}^{\infty} 2^j \frac{j! (j+1)!}{(2j+1)!} =\sum_{j=1}^{\infty} \frac{2^j}{\binom{2j+1}{j}} = \frac{\pi}{2}$$

Edita:

Si quiere saber cómo llegar a $\frac{\pi}{2}$ luego mira la pregunta y la respuesta de: Cómo sumar esta serie para π/2 directamente?

2voto

kishea Puntos 74

Corregir $(2n)!$ a $(2n+1)!$ en el enésimo término de OP, tenemos

$$S=\sum_{n=1}^{\infty} \frac{2^n n! (n+1)!}{(2n+1)!} =\sum_{n=1}^{\infty}\frac{2^n n ~\Gamma(n) \Gamma(n+2)}{\Gamma(2n+2)}=\sum_{n=1}^{\infty}2^n n~B(n,n+2)= \sum_{n=1}^{\infty} 2n\int_{0}^{\pi/2} 2^n \sin^{2n-1} x ~\cos^{2n+3} xdx.$$
$$S=\int_{0}^{\pi/2} \sqrt{2}\cos^4 x \sum_{n=1}^{\infty} n~(\sqrt{2} \sin x \cos x)^{2n-1}$$ Utilizando el resultado de la GP infinita de que $\sum_{1}^{\infty} n ~z^{2n-1} =\frac{z}{(1-z^2)^2}$ Obtenemos $$S=\int_{0}^{\pi/2} \sqrt{2} \cos^4 x \frac{\sqrt{2} \sin x \cos x}{(1-2\sin^2 x\cos^2 x)^2} dx= \int_{0}^{\pi/2} \frac{2 \sin x \cos^5x}{(1-2\sin^2 x \cos^2 x)^2} dx$$ Siguiente $\int_{0}^{a} f(x) dx= \int_{0}^{a} f(a-x) dx,$ obtenemos $$S=\int_{0}^{\pi/2} \frac{2 \sin^5 x \cos x}{(1-2\sin^2 x \cos^2 x)^2} dx$$ Sumando las dos últimas integrales, obtenemos Así que $$2S=\int_{0}^{\pi/2} \frac{2\sin x \cos x(\sin^4 x+ \cos^4 x)}{(1-2\sin^2 x \cos^2 x)^2}=\int_{0}^{\pi/2} \frac{2\sin x \cos x}{(1-2\sin^2 x \cos^2 x)}dx=\int_{0}^{\pi/2} \frac{4\sin 2x dx}{1+\cos^2 2x}$$ $$\implies 2S=8\int_{0}^{\pi/4}\frac{\sin 2x dx}{1+\cos^2 2x}=-4\int_{1}^{0}\frac{dt}{1+t^2}=\pi \implies S=\frac{\pi}{2}$$ Por último, hemos utilizado $\cos 2x=t.$

1voto

Andronicus Puntos 43

El producto puede simplificarse en:

$$\sum_{j=1}^{\infty}\prod_{k=1}^{j}\frac{2k}{j+k+1}= \sum_{j=1}^{\infty} \frac{j!(j+1)! 2^j}{(2j+1)!}= \sum_{j=1}^{\infty} \frac{2^j}{\binom{2j+1}{j}}$$

1voto

Claude Leibovici Puntos 54392

Sorprendente es reconocer algunas series.

Considere $$S=\sum_{j=1}^{\infty} \frac{j!\,(j+1)!\, 2^j}{(2j+1)!}x^{2j}$$ Sea $x=y \sqrt 2$ hacer $$S=\sum_{j=1}^{\infty}\frac{4^j\, j!\, (j+1)! }{(2 j+1)!}y^{2 j}=-\frac{y^2}{y^2-1}+\frac{1}{2 \left(y^2-1\right)}-\frac{\sin ^{-1}(y)}{2 \sqrt{1-y^2} \left(y^2-1\right) y}$$ En $y=\frac 1 {\sqrt 2}$ da el resultado.

Si expandimos la rhs como una serie de Taylor construida alrededor de $y=\frac 1 {\sqrt 2}$ tenemos $$S=\frac{\pi }{2}+\sqrt{2} (4+\pi ) \left(y-\frac{1}{\sqrt{2}}\right)+O\left(\left(y-\frac{1}{\sqrt{2}}\right)^2 \right)$$ $$S=\frac{\pi }{2}+(4+\pi ) (x-1)+O\left((x-1)^2\right)$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X