9 votos

Mostrar que $(\sqrt{2} + \sqrt{3})^{2009}$ se redondea a un número par.

Mostrar que si la ronda de $(\sqrt{2} + \sqrt{3})^{2009}$ al entero más cercano de obtener un número par.

He intentado, sin éxito, para escribir en forma binomial y para multiplicar con un conjugado.

edit: tal vez ha cambiado el número para el nuevo curso de 2009? no estoy seguro. Ahora volfram alfa da 0 como el resto. http://www.wolframalpha.com/input/?i=round%5B%28sqrt%282%29%2Bsqrt%283%29%29%5E2009%5D+mod+10

Alguien tiene alguna idea? Gracias,

4voto

leoinfo Puntos 3364

Esta no es una solución, sino más bien de una forma general para abordar este tipo de preguntas. Tal vez usted puede continuar a partir de aquí:
1) Denotan $\alpha=\sqrt{2}+\sqrt{3}$. Encontrar un polinomio sobre los enteros $p(x)$ tal que $p(\alpha)=0$, preferiblemente de un grado pequeño. Por ejemplo, aquí tenemos: $$\alpha^2=2+2\sqrt{6}+3=5+2\sqrt{6}\hspace{5pt}\Rightarrow\hspace{5pt}\alpha^4-10\alpha^2+25=(\alpha^2-5)^2=24$$ De modo que podemos elegir $p(x)=x^4-10x^2+1$. A partir de la construcción es fácil ver que las otras raíces de $p(x)$ $\bar{\alpha}=\sqrt{2}-\sqrt{3}$, $-\alpha=-\sqrt{2}-\sqrt{3}$ y $-\bar{\alpha}=-\sqrt{2}+\sqrt{3}$.
2) Considere el sistema lineal homogéneo de la recurrencia de la relación tal que $p(x)$ es su polinomio característico: $a_n-10a_{n-2}+a_{n-4}=0$. La solución general de esta ecuación es dada por $a_n=A_1\alpha^n+A_2(-\alpha)^n+A_3(\bar{\alpha})^n+A_4(-\bar{\alpha})^n$.
Ahora tenemos que construir una solución (encontrar algunos $A_2,A_3,A_4$ y corregir $A_1=1$) de tal manera que el entero más cercano a $\sqrt{2}+\sqrt{3})^{2009}$ es $a_{2009}$ o $a_{2009}-1$.
Tener la recurrencia de la relación nos permite probar de forma inductiva que para todos los impares $n$, $a_n$ tienen la misma paridad basado sólo en $a_1$$a_3$.

4voto

zyx Puntos 20965

La esperanza es que para lo suficientemente grande como $n$ el redondeo de $a_n = (\sqrt{2}+\sqrt{3})^n$ es lineal recursiva de la secuencia, pero hay una complicación. Redondeo de potencias pares e impares trabajará de manera diferente debido a uno de los conjugados, $-\sqrt{2} - \sqrt{3}$, teniendo el mismo valor absoluto como $\sqrt{2}+\sqrt{3}$. Por lo tanto, el par y el impar subsecuencias debe ser considerado por separado.

$a_{2n} = (5 + 2 \sqrt{6})^n$ está cerca de a $b_n = (5 + 2 \sqrt{6})^n + (5 - 2 \sqrt{6})^n$, un número entero, y el segundo término converge a $0$, así que con la posible excepción de un par de pequeñas $n$, el redondeo de $a_{2n}$ $b_n$ cuya paridad (y patrón periódico mod $k$ cualquier $k$) se puede determinar fácilmente a partir de la recursividad $b_{n+2}=10b_{n+1}-b_n$.

Por extraño $n$, los valores de la paridad de la redondeado $a_{2n+1}$ $n=1$ $900$

{1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0}

Tal vez hay un periódico larga que podría "explicar" la aparición de algunos de los grandes extraño $n$ en un problema como este, pero no veo uno.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X