Mostrar que si la ronda de $(\sqrt{2} + \sqrt{3})^{2009}$ al entero más cercano de obtener un número par.
He intentado, sin éxito, para escribir en forma binomial y para multiplicar con un conjugado.
edit: tal vez ha cambiado el número para el nuevo curso de 2009? no estoy seguro. Ahora volfram alfa da 0 como el resto. http://www.wolframalpha.com/input/?i=round%5B%28sqrt%282%29%2Bsqrt%283%29%29%5E2009%5D+mod+10
Alguien tiene alguna idea? Gracias,
Respuestas
¿Demasiados anuncios?Esta no es una solución, sino más bien de una forma general para abordar este tipo de preguntas. Tal vez usted puede continuar a partir de aquí:
1) Denotan $\alpha=\sqrt{2}+\sqrt{3}$. Encontrar un polinomio sobre los enteros $p(x)$ tal que $p(\alpha)=0$, preferiblemente de un grado pequeño. Por ejemplo, aquí tenemos:
$$\alpha^2=2+2\sqrt{6}+3=5+2\sqrt{6}\hspace{5pt}\Rightarrow\hspace{5pt}\alpha^4-10\alpha^2+25=(\alpha^2-5)^2=24$$
De modo que podemos elegir $p(x)=x^4-10x^2+1$. A partir de la construcción es fácil ver que las otras raíces de $p(x)$ $\bar{\alpha}=\sqrt{2}-\sqrt{3}$, $-\alpha=-\sqrt{2}-\sqrt{3}$ y $-\bar{\alpha}=-\sqrt{2}+\sqrt{3}$.
2) Considere el sistema lineal homogéneo de la recurrencia de la relación tal que $p(x)$ es su polinomio característico: $a_n-10a_{n-2}+a_{n-4}=0$. La solución general de esta ecuación es dada por $a_n=A_1\alpha^n+A_2(-\alpha)^n+A_3(\bar{\alpha})^n+A_4(-\bar{\alpha})^n$.
Ahora tenemos que construir una solución (encontrar algunos $A_2,A_3,A_4$ y corregir $A_1=1$) de tal manera que el entero más cercano a $\sqrt{2}+\sqrt{3})^{2009}$ es $a_{2009}$ o $a_{2009}-1$.
Tener la recurrencia de la relación nos permite probar de forma inductiva que para todos los impares $n$, $a_n$ tienen la misma paridad basado sólo en $a_1$$a_3$.
La esperanza es que para lo suficientemente grande como $n$ el redondeo de $a_n = (\sqrt{2}+\sqrt{3})^n$ es lineal recursiva de la secuencia, pero hay una complicación. Redondeo de potencias pares e impares trabajará de manera diferente debido a uno de los conjugados, $-\sqrt{2} - \sqrt{3}$, teniendo el mismo valor absoluto como $\sqrt{2}+\sqrt{3}$. Por lo tanto, el par y el impar subsecuencias debe ser considerado por separado.
$a_{2n} = (5 + 2 \sqrt{6})^n$ está cerca de a $b_n = (5 + 2 \sqrt{6})^n + (5 - 2 \sqrt{6})^n$, un número entero, y el segundo término converge a $0$, así que con la posible excepción de un par de pequeñas $n$, el redondeo de $a_{2n}$ $b_n$ cuya paridad (y patrón periódico mod $k$ cualquier $k$) se puede determinar fácilmente a partir de la recursividad $b_{n+2}=10b_{n+1}-b_n$.
Por extraño $n$, los valores de la paridad de la redondeado $a_{2n+1}$ $n=1$ $900$
{1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0}
Tal vez hay un periódico larga que podría "explicar" la aparición de algunos de los grandes extraño $n$ en un problema como este, pero no veo uno.