Me dan este problema de un examen pasado que estoy tratando de resolver, he tratado de encontrar el conjugado y yendo sobre el. Pero no estoy recibiendo la transformación correcta.
Por favor, ayuda.
Demuestre que una transformación lineal fraccionaria $f$ envía el semiplano superior
$$H:= \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0 \}$$
a sí misma si y sólo si es de la forma
$$f(z) = \frac{az+b}{cz+d}$$
donde $a, b, c, d$ son números reales y $ad-bc >0$ . Se puede suponer que dicha transformación también debe enviar $\hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\ \} $ a sí misma.
Gracias