Supongamos que $u=u(x,y)$ y $v=v(x,y)$ tienen segundas derivadas parciales continuas. Si para cada $f$ tenemos $$\frac{\partial^2f}{\partial u^2}+\frac{\partial^2f}{\partial v^2}=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2},$$ demostrar que el jacobiano $\begin{pmatrix}\frac{\partial u}{\partial x}&\frac{\partial u}{\partial y}\\\frac{\partial v}{\partial x}&\frac{\partial v}{\partial y}\end{pmatrix}$ es constante.
Utilizando la regla de la cadena, $$\frac{\partial^2f}{\partial x^2}=\left(\frac{\partial u}{\partial x}\right)^2\frac{\partial^2f}{\partial u^2}+2\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}+\left(\frac{\partial v}{\partial x}\right)^2\frac{\partial^2f}{\partial v^2}\\ \frac{\partial^2f}{\partial y^2}=\left(\frac{\partial u}{\partial y}\right)^2\frac{\partial^2f}{\partial u^2}+2\frac{\partial u}{\partial y}\frac{\partial v}{\partial y}+\left(\frac{\partial v}{\partial y}\right)^2\frac{\partial^2f}{\partial v^2}$$ y vemos que el jacobiano es ortogonal. Pero, ¿cómo demostrar que es constante?