$$\frac{\partial^2u}{\partial x^2} - \frac{\partial^2u}{\partial y^2} = f(x,y) \implies \frac{\partial^2u}{\partial \partial } = \frac{1}{4}f\left(\frac{1}{2}(+),\frac{1}{2}(-)\right)$$
Configuración $ = x y, = x + y$ Recibo $x = \frac{1}{2}(+)$ et $y=\frac{1}{2}(-)$
Parece que no puedo mostrar que $\frac{\partial^2u}{\partial x^2} - \frac{\partial^2u}{\partial y^2} = 4\times \frac{\partial^2u}{\partial \partial }$
Mi trabajo es:
$$\partial u/\partial x = \frac{1}{2}\frac{\partial u} {\partial \xi} + \frac{1}{2}\frac{\partial u}{\partial \eta}$$
$$\partial u/\partial x = -\frac{1}{2}\frac{\partial u} {\partial \xi} + \frac{1}{2}\frac{\partial u}{\partial \eta}$$
$$\frac{\partial^2u}{\partial x^2} = \frac{1}{4}\frac{\partial^2u}{\partial \xi^2} + \frac{1}{4}\frac{\partial^2u}{\partial \eta^2}+ \frac{1}{2}\frac{\partial^2u}{\partial \partial }$$
$$\frac{\partial^2u}{\partial y^2} = \frac{1}{4}\frac{\partial^2u}{\partial \xi^2} + \frac{1}{4}\frac{\partial^2u}{\partial \eta^2}- \frac{1}{2}\frac{\partial^2u}{\partial \partial }$$
¿En qué me equivoco? ¿Podría alguien ayudarme?