He aquí el problema: Demostrar que $I_{A_1\cup A_2 \cup\dots\cup A_n}(\omega)=\text{max}\{I_{A_2}(\omega),I_{A_1}(\omega),\dots,I_{A_n}(\omega)\}$ para cualquier conjunto $A_1,A_2,\dots,A_n$
Esto es lo que sé: $$I_{A_1\cup A_2 \cup\dots\cup A_n}(\omega)\begin{gathered}=\begin{cases} 1\quad\text{if}\quad\omega\in A_1\cup A_2 \cup\dots\cup A_n \\ 0\quad\text{if}\quad\omega\notin A_1\cup A_2 \cup\dots\cup A_n \end{cases}\\=\begin{cases} 1\quad\text{if}\quad\omega~\text{belongs in one of the}~A_n's \\ 0\quad\text{if}\quad\omega~\text{belongs in none of the}~A_n's\end{cases}\\=\begin{cases} 1\quad\text{if}\quad I_{A_n}(\omega)=1~\text{for at least one}~A_n \\ 0\quad\text{if}\quad I_{A_n}(\omega)=0~\text{for all}~A_n's\end{cases}\end{gathered}$$
No sé adónde ir a partir de aquí.