Tenía problemas con la pregunta:
Demostrar que $$I:=\int_0^{\infty}\frac{\ln(1+x^2)}{x^2(1+x^2)}dx=\pi\ln\big(\frac e 2\big)$$
Mi intento
Realizar fracciones parciales $$I=\int_0^{\infty}\frac{\ln(1+x^2)}{x^2(1+x^2)}dx=\int_0^{\infty}\frac{\ln(1+x^2)}{x^2}dx-\int_0^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx=$$ Primera integral $$\int_0^{\infty}\frac{\ln(1+x^2)}{x^2}dx=-\Bigg[\frac{\ln(x^2+1)}{x}\Bigg]_0^{\infty}+\int_0^{\infty}\frac{2}{x^2+1}=\pi$$ Segunda integral $$\int_0^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx=$$ ¿Cómo se resuelve esta integral? Gracias por su tiempo