Pista:
$4(u-1)u((u-1)u\varphi1''(u)+(u-2)\varphi1'(u))+\varphi1(u)((u-1)u\omega^2-u(u+4)+8)=0$
$u(u-1)\varphi1''(u)+(u-2)\varphi1'(u)+\dfrac{(\omega^2-1)u(u-1)-5u+8}{4u(u-1)}\varphi1(u)=0$
$u(u-1)\varphi1''(u)+(u-2)\varphi1'(u)+\left(\dfrac{\omega^2-1}{4}-\dfrac{5}{4(u-1)}+\dfrac{2}{u(u-1)}\right)\varphi1(u)=0$
$u(u-1)\varphi1''(u)+(u-2)\varphi1'(u)+\left(\dfrac{\omega^2-1}{4}-\dfrac{2}{u}+\dfrac{3}{4(u-1)}\right)\varphi1(u)=0$
$\varphi1''(u)+\dfrac{u-2}{u(u-1)}\varphi1'(u)+\left(\dfrac{\omega^2-1}{4u(u-1)}-\dfrac{2}{u^2(u-1)}+\dfrac{3}{4u(u-1)^2}\right)\varphi1(u)=0$
$\varphi1''(u)+\left(\dfrac{2}{u}-\dfrac{1}{u-1}\right)\varphi1'(u)+\left(\dfrac{2}{u^2}+\dfrac{\omega^2-12}{4u(u-1)}+\dfrac{3}{4(u-1)^2}\right)\varphi1(u)=0$
Sea $\varphi1=u^a(u-1)^bv$ ,
Entonces $\dfrac{d\varphi1}{du}=u^a(u-1)^b\dfrac{dv}{du}+u^a(u-1)^b\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)v$
$\dfrac{d^2\varphi1}{du^2}=u^a(u-1)^b\dfrac{d^2v}{du^2}+u^a(u-1)^b\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)\dfrac{dv}{du}+u^a(u-1)^b\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)\dfrac{dv}{du}+u^a(u-1)^b\left(\dfrac{a(a-1)}{u^2}+\dfrac{2ab}{u(u-1)}+\dfrac{b(b-1)}{(u-1)^2}\right)v=u^a(u-1)^b\dfrac{d^2v}{du^2}+2u^a(u-1)^b\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)\dfrac{dv}{du}+u^a(u-1)^b\left(\dfrac{a(a-1)}{u^2}+\dfrac{2ab}{u(u-1)}+\dfrac{b(b-1)}{(u-1)^2}\right)v$
$\therefore u^a(u-1)^b\dfrac{d^2v}{du^2}+2u^a(u-1)^b\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)\dfrac{dv}{du}+u^a(u-1)^b\left(\dfrac{a(a-1)}{u^2}+\dfrac{2ab}{u(u-1)}+\dfrac{b(b-1)}{(u-1)^2}\right)v+\left(\dfrac{2}{u}-\dfrac{1}{u-1}\right)\left(u^a(u-1)^b\dfrac{dv}{du}+u^a(u-1)^b\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)v\right)+\left(\dfrac{2}{u^2}+\dfrac{\omega^2-12}{4u(u-1)}+\dfrac{3}{4(u-1)^2}\right)u^a(u-1)^bv=0$
$\dfrac{d^2v}{du^2}+2\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)\dfrac{dv}{du}+\left(\dfrac{a(a-1)}{u^2}+\dfrac{2ab}{u(u-1)}+\dfrac{b(b-1)}{(u-1)^2}\right)v+\left(\dfrac{2}{u}-\dfrac{1}{u-1}\right)\left(\dfrac{dv}{du}+\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)v\right)+\left(\dfrac{2}{u^2}+\dfrac{\omega^2-12}{4u(u-1)}+\dfrac{3}{4(u-1)^2}\right)v=0$
$\dfrac{d^2v}{du^2}+\left(\dfrac{2a}{u}+\dfrac{2b}{u-1}\right)\dfrac{dv}{du}+\left(\dfrac{a(a-1)}{u^2}+\dfrac{2ab}{u(u-1)}+\dfrac{b(b-1)}{(u-1)^2}\right)v+\left(\dfrac{2}{u}-\dfrac{1}{u-1}\right)\dfrac{dv}{du}+\left(\dfrac{2}{u}-\dfrac{1}{u-1}\right)\left(\dfrac{a}{u}+\dfrac{b}{u-1}\right)v+\left(\dfrac{2}{u^2}+\dfrac{\omega^2-12}{4u(u-1)}+\dfrac{3}{4(u-1)^2}\right)v=0$
$\dfrac{d^2v}{du^2}+\left(\dfrac{2(a+1)}{u}+\dfrac{2b-1}{u-1}\right)\dfrac{dv}{du}+\left(\dfrac{a(a-1)}{u^2}+\dfrac{2ab}{u(u-1)}+\dfrac{b(b-1)}{(u-1)^2}\right)v+\left(\dfrac{2a}{u^2}-\dfrac{a-2b}{u(u-1)}+\dfrac{b}{(u-1)^2}\right)v+\left(\dfrac{2}{u^2}+\dfrac{\omega^2-12}{4u(u-1)}+\dfrac{3}{4(u-1)^2}\right)v=0$
$\dfrac{d^2v}{du^2}+\left(\dfrac{2(a+1)}{u}+\dfrac{2b-1}{u-1}\right)\dfrac{dv}{du}+\left(\dfrac{a^2+a+2}{u^2}+\dfrac{8ab-4a+8b+\omega^2-12}{4u(u-1)}+\dfrac{4b^2+3}{4(u-1)^2}\right)v=0$
Elija $a^2+a+2=0$ y $4b^2+3=0$ y la EDO se reduce a la ecuación hipergeométrica de Gauss.