1 votos

Desigualdad infinita con logaritmo

Resolver la desigualdad $3 - \log_{0.5}x - \log^2_{0.5}x - \log^3_{0.5}x - \cdots \ge 4\log_{0.5}x$ ¿Alguna sugerencia para empezar?

1voto

Dr. MV Puntos 34555

Tenemos

$$\begin{align} 3-\log_{0.5}x-\log^2_{0.5}x-\log^3_{0.5}x-\cdots&=4-\sum_{n=0}^{\infty}\log^n_{0.5}x\\\\ &=4-\frac{1}{1-\log_{0.5}x}\\\\ &=\frac{3-4\log_{0.5}x}{1-\log_{0.5}x} \end{align}$$

para $|\log_{0.5}x|<1\implies 0.5<x<2$ . Obsérvese ahora que la desigualdad

$$\frac{3-4\log_{0.5}x}{1-\log_{0.5}x}\ge 4\log_{0.5}x$$

es equivalente a

$$\left(2\log_{0.5}x-3\right)\left(2\log_{0.5}x-1\right)\ge 0$$

lo que implica $\log_{0.5}x\le 0.5$ o $x\ge \sqrt{2}/2$ . Por lo tanto, tenemos

$$\bbox[5px,border:2px solid #C0A000]{\sqrt{2}/2\le x<2}$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X