9 votos

Cómo demostrar esta desigualdad $\left|\int_{a}^{b}f(x)dx\right|\leq \frac{1}{8}(b-a)^{2}\int_{a}^{b}\left|f''(x)\right|dx$

Dejemos que $f(x)\in \mathcal C^2([a,b]),f(\frac{a+b}{2})=0$ .

Demostrar que $$\left|\int_{a}^{b}f(x)dx\right|\leq \frac{1}{8}(b-a)^{2}\int_{a}^{b}\left|f''(x)\right|dx.$$

Trato de usar Teorema de Taylor con forma integral del resto Entonces tengo $$f(x)=f(\frac{a+b}{2})+f'(\frac{a+b}{2})(x-\frac{a+b}{2})+\int_{\frac{a+b}{2}}^{x}(x-t)f''(t)dt.$$ Desde $f(\frac{a+b}{2})=\int_{a}^{b}f'(\frac{a+b}{2})(x-\frac{a+b}{2})dx=0, $ obtenemos $\int_{a}^{b}f(x)dx=\int_{a}^{b}\left(\int_{\frac{a+b}{2}}^{x}(x-t)f''(t)dt\right)dx.$ Creo que el objetivo de este problema es demostrar: $$\left|\int_{a}^{b}\left(\int_{\frac{a+b}{2}}^{x}(x-t)f''(t)dt\right)dx\right|\leq\frac{1}{8}(b-a)^{2}\int_{a}^{b}\left|f''(x)\right|dx.$$ El coeficiente de $\frac{1}{8}$ es extraño, ¿y cómo encontrarlo?

9voto

MrTuttle Puntos 1116

Cambiando el orden de integración, obtenemos

\begin{align} \int_{\frac{a+b}{2}}^b \int_{\frac{a+b}{2}}^x (x-t)f''(t)\,dt\,dx &= \int_{\frac{a+b}{2}}^b \int_t^b (x-t)\,dx\, f''(t)\,dt\\ &= \int_{\frac{a+b}{2}}^b \frac{(b-t)^2}{2}f''(t)\,dt. \end{align}

Ahora podemos tomar el valor absoluto para obtener

\begin{align} \biggl\lvert \int_{\frac{a+b}{2}}^b \int_{\frac{a+b}{2}}^x (x-t)f''(t)\,dt\,dx \biggr\rvert &\leqslant \int_{\frac{a+b}{2}}^b \frac{(b-t)^2}{2} \lvert f''(t)\rvert\,dt\\ &\leqslant \frac{(b-a)^2}{8} \int_{\frac{a+b}{2}}^b \lvert f''(t)\rvert\,dt, \end{align}

desde $0 \leqslant b-t \leqslant b - \frac{a+b}{2} = \frac{b-a}{2}$ para $\frac{a+b}{2} \leqslant t \leqslant b$ .

La estimación análoga para la integral sobre la primera mitad del intervalo da la conclusión deseada

\begin{align} \biggl\lvert \int_{a}^b \int_{\frac{a+b}{2}}^x (x-t)f''(t)\,dt\,dx\biggr\rvert &\leqslant \biggl\lvert \int_{\frac{a+b}{2}}^b \int_{\frac{a+b}{2}}^x (x-t)f''(t)\,dt\,dx \biggr\rvert + \biggl\lvert \int_a^{\frac{a+b}{2}} \int_{\frac{a+b}{2}}^x (x-t)f''(t)\,dt\,dx \biggr\rvert\\ &\leqslant \frac{(b-a)^2}{8} \Biggl(\int_{\frac{a+b}{2}}^b \lvert f''(t)\rvert\,dt + \int_a^{\frac{a+b}{2}}\lvert f''(t)\rvert\,dt\Biggr). \end{align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X