$\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{equation} \sum_{i = 1}^{\infty}{2^{i - 1}\pars{i - 1}! \over \prod_{j = 1}^{i}\pars{2j + 1}}:\ ?\label{1}\tag{1} \end{equation}
\begin{align} &\bbox[8px,border:0.1em groove navy]{{2^{i - 1}\pars{i - 1}! \over \prod_{j = 1}^{i}\pars{2j + 1}}} = {2^{i - 1}\pars{i - 1}! \over 2^{i}\prod_{j = 1}^{i}\pars{j + 1/2}} \\[5mm] = &\ {1 \over 2}\,{\pars{i - 1}! \over \pars{3/2}_{i}} \qquad\pars{~\vphantom{\large A}\pars{a}_{n}:\ Pochhammer\ Symbol~} \\[5mm] = &\ {1 \over 2}\,{\pars{i - 1}! \over \Gamma\pars{3/2 + i}/\Gamma\pars{3/2}} = {1 \over 2}\,\ \underbrace{{\Gamma\pars{i}\Gamma\pars{3/2} \over \Gamma\pars{i + 3/2}}} _{\ds{\mrm{B}\pars{i,3/2}}}\qquad \pars{~\mrm{B}:\ Beta\ Function~} \\ = &\,\, \bbox[8px,border:0.1em groove navy]{{1 \over 2} \int_{0}^{1}x^{i - 1}\pars{1 - x}^{1/2}\,\dd x}\label{2}\tag{2} \end{align}
N $\ds{\pars{a}_{n} = {\Gamma\pars{a + n} \over \Gamma\pars{a}}}$ w $\ds{\Gamma}$ es el Función gamma . Insertando el resultado \eqref {2} en la expresión \eqref {1}:
\begin{align} \color{#f00}{\sum_{i = 1}^{\infty}{2^{i - 1}\pars{i - 1}! \over \prod_{j = 1}^{i}\pars{2j + 1}}} & = \sum_{i = 1}^{\infty}{1 \over 2} \int_{0}^{1}x^{i - 1}\pars{1 - x}^{1/2}\,\dd x = {1 \over 2}\int_{0}^{1}{\dd x \over \root{1 - x}} = \color{#f00}{1} \end{align}