Para qué valores de a$a$, $$\sum_{n=1}^\infty \left( 1+\frac12 + \dotsb + \frac1n \right) \frac{\sin (na)}{n}$$ convergen?
A mi manera de pensar, $$f(n)=\frac{\left( 1+\frac12 + \dotsb + \frac1n \right)}{n}$$ will behave like $\frac{\log n}{n}$, which is not convergent, but certainly has terms going to zero (eventually monotonically). By Dirichlet's test, $$\sum_{n=1}^\infty f(n) \sin(an)$$ will converge provided that the partial sums of $\sum_{n=1}^\infty \sin(na)$ are bounded, which they always are. So it should converge for all $\in \mathbb{R}$.
Agradecería que alguien señalando los errores en este razonamiento. Gracias