2 votos

Trazar gráfico con maple o matlab

He intentado utilizar maple y matlab para trazar esta pregunta, pero parece ser incapaz de trazar, me gustaría preguntar si hay alguna idea sobre el trazado de esta pregunta utilizando maple o matlab? enter image description here

5voto

Matthew Scouten Puntos 2518

Aquí está Maple. Observe que (aunque la suma converge en $t=0$ ) parece haber dificultades numéricas cuando $t$ está muy cerca de $0$ así que empecé en $t=0.01$ .

u:= Sum((1+(-1)^n)/(n*Pi)*sin(n*Pi*x)*exp(-n^2*Pi^2*t),n=1..infinity) +x+1:
plot3d(u,x=0..1,t=0.01..0.2);

enter image description here

EDITAR: $u(x,0)$ debe ser una función escalonada: esencialmente $3/2 + \lfloor x \rfloor$ ( $x+1$ cuando $x$ es exactamente un número entero, pero lo ignoraré). Así que aquí está una imagen mejor.

U:= proc(x,t) if t = 0 then 3/2 + floor(x)
  else Sum((1+(-1)^n)/(n*Pi)*sin(n*Pi*x)*exp(-n^2*Pi^2*t),n=1..infinity) +x+1 fi 
 end proc;
plot3d(U,-0.5 .. 1.5,0.. 0.2);

enter image description here

1voto

Fabio Somenzi Puntos 11

Aquí tienes una solución MATLAB.

px = 2000;
pt = 1000;
niter = 100;
u = zeros(px,pt);
x = linspace(0,2,px);
t = linspace(0,1,pt);

for p = 1:px
  for q = 1:pt
    v = 0;
    for n = 2:2:niter
      v = v + 2/(n*pi) * sin(n*pi*x(p)) * exp(-n.^2*pi^2*t(q));
    end
    u(p,q) = v + x(p) + 1;
  end
end

[X,T] = meshgrid(t,x);

mesh(X,T,u)

enter image description here

Otra solución, basada en MATLAB simbólico,

syms x t n

u = symsum((1+(-1)^n)/(n*sym(pi)) * sin(n*sym(pi)*x) * exp(-n^2*sym(pi)^2*t),n,1,500) + x + 1;

fsurf(u,[0,0.2,0,2])
xlabel('t')
ylabel('x')

produce este gráfico

enter image description here

0voto

PierreCarre Puntos 648

Obtuve este gráfico con Mathematica en unos segundos... 3D Plot truncating the sum to 50 terms

La parcela es para $t \in [0,1]$ y $x\in [0,2]$ .

En matlab supongo que se puede empezar construyendo una matriz con los valores de la función en una rejilla determinada. Cada valor de función se calcula mediante una suma finita (la exponencial hace que la serie converja bastante rápido). Esa matriz se puede utilizar para obtener el gráfico de superficie.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X