1 votos

Sea $\theta$ a $1-$ forma. Por qué $d\theta(X,Y)=X\theta(y)-Y\theta(X)-\theta([X,Y])$ ?

Sea $\theta$ a $1-$ forma. Por qué $$\mathrm d\theta(X,Y)=X\theta(Y)-Y\theta(X)-\theta([X,Y])\ \ ?$$

Sé que $\theta=\sum_{i=1}^n a\mathrm d x^i$ donde $a\in \mathcal C^\infty (U)$ y $U$ un abierto. Entonces, $$\mathrm d \theta=\sum_{i=1}^n \mathrm d a\wedge \mathrm d x^i.$$ Entonces, $$\mathrm d \theta(X,Y)=\sum_{i=1}^n \mathrm d a\wedge \mathrm d x^i(X,Y)=\sum_{i=1}^n (\mathrm d a(X)\mathrm d x^i(Y)-\mathrm d a(Y)\mathrm d x^i(X))$$ $$=X(a)\sum_{i=1}^n\mathrm d x^i(Y)-Y(a)\sum_{i=1}^n\mathrm d x^i(X),$$ y no encuentro la fórmula. ¿Alguna idea?

3voto

lattice Puntos 83

Obsérvese en primer lugar que la ecuación es lineal en $\theta$ por lo que basta con considerar el caso $\theta = adx^k$ con algunos $a \in C^\infty(U)$ . Así, $$d\theta = \sum_{i=1}^{n}\frac{\delta a}{\delta x^i}dx^i\wedge dx^k.$$ Escribamos los campos vectoriales en términos de coordenadas, es decir $$X = \xi^1\frac{1}{\delta x^1} + \dots + \xi^n\frac{1}{\delta x^n},\ \ \ Y = \zeta^1\frac{1}{\delta x^1} + \dots + \zeta^n\frac{1}{\delta x^n},$$ con funciones suaves $\xi^1,\dots,\xi^n,\zeta^1,\dots,\zeta^n$ en $U$ . Calculamos: \begin{equation}\begin{split} d\theta\cdot(X \wedge Y) & = (\sum_{i=1}^{n}\frac{\delta a}{\delta x^i}dx^i\wedge dx^k)(X \wedge Y)\\ & = \sum_{i=1}^{n}((\frac{\delta a}{\delta x^i}dx^i\wedge dx^k) (X \wedge Y))\\ & = \sum_{i=1}^{n}\frac{\delta a}{\delta x^i}(X(x^i))(Y(x^k))-\frac{\delta a}{\delta x^i}(Y(x^i))(X(x^k))\\ & = \sum_{i=1}^{n}\frac{\delta a}{\delta x^i} (\xi^i\zeta^k - \xi^k\zeta^i),\\ X(\theta\cdot Y) & = X(adx^k(Y))\\ & = X(aY(x^k))\\ & = X(a\zeta^k)\\ & = \xi^1\frac{\delta(a\zeta^k)}{\delta x^1} + \dots + \xi^n\frac{\delta(a\zeta^k)}{\delta x^n}\\ & = \xi^1a\frac{\delta\zeta^k}{\delta x^1} + \xi^1\zeta^k\frac{\delta a}{\delta x^1} + \dots + \xi^na\frac{\delta\zeta^k}{\delta x^n} + \xi^n\zeta^k\frac{\delta a}{\delta x^n}\\ & = \sum_{i=1}^{n}(\xi^ia\frac{\delta\zeta^k}{\delta x^i} + \zeta^i\xi^k\frac{\delta a}{\delta x^i}),\\ Y(\theta\cdot X) & = \sum_{i=1}^{n}(\xi^ia\frac{\delta\zeta^k}{\delta x^i} + \zeta^i\xi^k\frac{\delta a}{\delta x^i}). \end{split}\end{equation} A continuación, se puede demostrar que el corchete de Lie de $\eta_1\frac{\delta}{\delta x^i}$ y $\eta_2\frac{\delta}{\delta x^j}$ para cualquier $\eta_1,\eta_2$ est $\eta_1\frac{\delta\eta_2}{\delta x^i}\frac{\delta}{\delta x^j} - \eta_2\frac{\delta\eta_1}{\delta x^j}\frac{\delta}{\delta x^i}$ además, el corchete de Lie como función es lineal en ambas entradas, lo que nos da el corchete de Lie de $X$ y $Y$ . De ello se deduce que

\begin{equation}\begin{split} \theta\cdot[X,Y] & = \theta\cdot(\sum_{i,j=1}^n \xi^i\frac{\delta\zeta^j}{\delta x^i}\frac{j}{\delta x^j} - \zeta^j \frac{\delta\xi^i}{\delta x^j}\frac{\delta}{\delta x^i})\\ & = \theta\cdot(\sum_{i=1}^n (\sum_{j=1}^n \xi^j \frac{\delta\zeta^i}{\delta x^j} - \zeta^j \frac{\delta\xi^i}{\delta x^j})\frac{\delta}{\delta x^i})\\ & = adx^k (\sum_{i=1}^n (\sum_{j=1}^n \xi \frac{\delta\zeta^i}{\delta x^j} - \zeta^j \frac{\delta\xi^i}{\delta x^j})\frac{\delta}{\delta x^i})\\ & = a (\sum_{j=1}^n \xi^j \frac{\delta\zeta^k}{\delta x^j} - \zeta^j\frac{\delta\xi^k}{\delta x^j})\\ & = \sum_{j=1}^n (a\xi^j\frac{\delta\zeta^k}{\delta x^j} - a\zeta^j\frac{\delta\xi^k}{\delta x^j}). \end{split}\end{equation}

Si juntamos todos los términos obtenemos

\begin{equation}\begin{split} X(\theta\cdot Y) - Y(\theta\cdot X) - \theta\cdot[X,Y] & = (\sum_{i=1}^n \xi^ia\frac{\delta\zeta^k}{\delta x^i} + \xi^i\zeta^k\frac{\delta a}{\delta x^i}) - (\sum_{i=1}^n \zeta^ia\frac{\delta\xi^k}{\delta x^i} + \zeta^i\xi^k\frac{\delta a}{\delta x^i})\\ & - (\sum_{i=1}^n a\xi^i\frac{\delta\zeta^k}{\delta x^i} - a\zeta^i\frac{\delta\xi^k}{\delta x^i})\\ & = \sum_{i=1}^n (\xi^ia\frac{\delta\zeta^k}{\delta x^i} + \xi^i\zeta^k\frac{\delta a}{\delta x^i} - \zeta^ia\frac{\delta\xi^k}{\delta x^i} - \zeta^i\xi^k\frac{\delta a}{\delta x^i} - a\xi^i\frac{\delta\zeta^k}{\delta x^i} + a\zeta^i\frac{\delta\xi^k}{\delta x^i})\\ & = \sum_{i=1}^n (\xi^i\zeta^k\frac{\delta a}{\delta x^i} - \zeta^i\xi^k\frac{\delta a}{\delta x^i})\\ & = \sum_{i=1}^n (\xi^i\zeta^k - \xi^k\zeta^i)\frac{\delta a}{\delta x^i}\\ & = d\theta\cdot(X \wedge Y). \end{split}\end{equation}

Como ya se ha mencionado, el resultado se extiende linealmente a todas las 1-formas $\theta$ .

1voto

Tsemo Aristide Puntos 5203

Escriba a $X=\sum_iX_i{\partial\over{\partial x_i}}$

$\theta(X)=\sum_i a_iX_i$ , $Y.\theta(X)=\sum_ida_i(Y)X_i+a_idX_i(Y)$ .

Esto implica que $X.\theta(Y)-Y.\theta(X)-\theta([X,Y])=\sum_ida_i(X)Y_i+a_idY_i(X)-da_i(Y)X_i-a_idX_i(Y)-\sum_ia_i(dY_i(X)-dX_i(Y))$

$=\sum_ida_i(X)Y_i-da_i(Y)X_i.$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X