Demuestre por inducción que
$\sum_{k=1}^{n} \frac{k^{2}}{2^{k}} = 6 - \frac{n^2+4n+6}{2^{n}}$
n = 1
$LHS = \frac{1}{2}$
$RHS = 6 - \frac{1+4+6}{2} = \frac{1}{2}$
n = p
$LHS_{p} = \frac{1^{2}}{2^{1}} + \frac{2^{2}}{2^{2}} + \frac{3^{2}}{2^{3}} + ... \frac{p^{2}}{2^{p}}$
$RHS_{p} = 6 - \frac{P^2+4p+6}{2^{p}}$
n = p + 1
$LHS_{p+1} = \frac{1^{2}}{2^{1}} + \frac{2^{2}}{2^{2}} + \frac{3^{2}}{2^{3}} + ... \frac{p^{2}}{2^{p}} + \frac{(p+1)^{2}}{2^{(p+1)}}$
$RHS_{p+1} = 6 - \frac{(p+1)^2+4(p+1)+6}{2^{(p+1)}}$
Demuéstralo, $RHS_{p+1} = RHS + \frac{(p+1)^{2}}{2^{(p+1)}}$
$6 - \frac{(p+1)^2-4(p+1)+6}{2^{(p+1)}} = 6 - \frac{P^2+4p+6}{2^{p}} + \frac{(p+1)^{2}}{2^{(p+1)}}$