Claramente el $r^{th}$ numerador es $1+2+3+...+r= \frac{r(r+1)}{2}$ .
Y el $r^{th}$ denominador es $r!$.
Por lo tanto $$\displaystyle U_r=\frac{\frac{r(r+1)}{2}}{r!}=\frac{r(r+1)}{2r!}$$
Dado que el grado del numerador es $2$ , el uso de fracciones parciales para encontrar $A,B,C$ tales que (Si el uso de fracciones parciales a a $(r-3)!$ , su coeficiente será igual a cero cuando la comparación de los coeficientes.)
$\displaystyle U_r=\frac{r(r+1)}{2r!}=\frac{A}{(r-2)!}+\frac{B}{(r-1)!}+\frac{C}{r!}$
$\displaystyle (2r!)\times U_r=(2r!)\times \frac{r(r+1)}{2r!}=(2r!)\times \frac{A}{(r-2)!}+(2r!)\times \frac{B}{(r-1)!}+(2r!)\times \frac{C}{r!}$
Por lo $\displaystyle r(r+1)=r!\times \frac{2A}{(r-2)!}+r!\times \frac{2B}{(r-1)!}+r!\times \frac{2C}{r!}$
.............................................................................
Ahora observar que
$r!=1\times 2\times 3\times .... \times (r-2)\times(r-1)\times r $
$\Rightarrow r!=(r−2)! ×(r−1)r $ y
$ \Rightarrow r!=(r−1)!×r $
...............................................................................
Por lo $\displaystyle r(r+1)=(r−2)! ×(r−1)r \times \frac{2A}{(r-2)!}+(r−1)!×r\times \frac{2B}{(r-1)!}+r!\times \frac{2C}{r!}$
Por lo $\displaystyle r^2+r = 2A(r-1)r+2Br+ 2C $
Claramente $C=0$ , $B=1$ y $A=\frac{1}{2}$
Por lo $\displaystyle U_r=\frac{r(r+1)}{2r!}=\frac{1}{2(r-2)!}+\frac{1}{(r-1)!}$
$\displaystyle \sum_{r=2}^{\infty}U_r= \frac{1}{2} \left( \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+.....\right)+\left( \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....\right)$
$\displaystyle \sum_{r=2}^{\infty}U_r= \frac{1}{2} \left( e\right)+\left( e-1\right)$
$\displaystyle \sum_{r=1}^{\infty}U_r= U_1+\frac{1}{2} \left( e\right)+\left( e-1\right)=1+\frac{e}{2}+e-1 =\frac{3e}{2}$