1 votos

Cómo encontrar $u(x,y)$ para la PDE $u_x + 2u_y + (2x − y)u = 2x^2 + 3xy − 2y^2$ utilizando el Método de las Características y el Método de Integración de factores?

$$dx=\dfrac{dy}{2}=\dfrac{du}{(-2x+y)u+2x^2+3xy-2y^2}$$

$$\dfrac{dx}{dy}=\dfrac{1}{2} \implies x=\dfrac{y}{2}+A$$


Por el software sagemath,

$$\dfrac{du}{dy}=\dfrac{(-2x+y)u+2x^2+3xy-2y^2}{2}=1.0 \, A^{2} - 1.0 \, A u + 2.5 \, A y$$

Se trata de una EDO lineal no homogénea de primer orden.

$$u'-Au=A^2+2.5Ay$$

El factor integrador es $e^{-Ay}.$

La ecuación se convierte en $$e^{-Ay}u'-e^{-Ay}Au=e^{-Ay}(A^2+2.5Ay)$$

Se garantiza que $$\dfrac{\partial (e^{-Ay}u)}{\partial y}=e^{-Ay}(A^2+2.5Ay)$$

$$e^{-Ay}u=-A e^{\left(-A y\right)} - \frac{2.5 \, {\left(A y + 1\right)} e^{\left(-A y\right)}}{A}+B$$

$$B=e^{-Ay}u+A e^{\left(-A y\right)} + \frac{2.5 \, {\left(A y + 1\right)} e^{\left(-A y\right)}}{A}$$

$$f(x-y/2)=e^{-Ay}u+A e^{\left(-A y\right)} + \frac{2.5 \, {\left(A y + 1\right)} e^{\left(-A y\right)}}{A}$$

$$f(x-\dfrac{y}{2}) -A e^{\left(-A y\right)}-\frac{2.5 \, {\left(A y + 1\right)} e^{\left(-A y\right)}}{A}=ue^{-Ay}$$

$$u=\dfrac{f(x-\dfrac{y}{2})}{e^{-Ay}}-A-\dfrac{2.5(Ay+1)}{A}$$ pero no funciona por sustitución en la EDP original.

0voto

Extended Puntos 398

No has reordenado la ecuación diferencial correctamente. Desde

$$\dfrac{du}{dy}=A^{2} - \, A u + \frac{5}{2} A y$$

entonces tenemos

$$\frac{du}{dy}\color{red}{+}Au=A^2+\frac{5}{2}Ay$$

y multiplicando por el factor integrador $e^{Ay}$ tenemos

$$\frac{d}{dy}\left(ue^{Ay}\right)=A^2e^{Ay}+\frac{5}{2}Aye^{Ay}$$

$$ue^{Au}=B+Ae^{Ay}+\frac{5}{2}ye^{Ay}-\frac{5}{2A}e^{Ay}$$ $$u=Be^{-Ay}+A+\frac{5}{2}y-\frac{5}{2A}$$

que es lo que obtuvo JJacquelin.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X