20 votos

Dilema de la conservación de la energía

Supongamos que un hombre viaja en una nave espacial a cierta velocidad relativista con respecto a un hombre en reposo en algún punto del espacio, tal que 3 minutos en el barco equivalen a 5 minutos para la persona en reposo .

Supongamos también que el hombre del barco tiene un mechero que contiene gas en una cantidad tal que el mechero puede estar encendido durante 5 minutos .

Ahora bien, si el hombre de la nave espacial enciende el mechero durante 3 minutos, le quedarían 2 minutos de gas, pero el observador estacionario habría visto emitir luz durante unos 5 minutos (ya que 3 en esa nave espacial = 5 minutos para el observador estacionario)

¿Cómo es posible que el observador inmóvil vea la luz durante 5 minutos? Y en este caso, ¿cómo se conserva la energía?

44voto

Jahan Claes Puntos 1026

Desde la perspectiva del observador inmóvil, la luz es más tenue. ¿Por qué? Porque la reacción química se produce más lentamente, por lo que el fuego emite menos fotones por segundo. La llama arde durante más tiempo, pero emite menos energía por segundo. Ambos observadores estarán de acuerdo en la energía total emitida por la llama (una vez que hayan tenido en cuenta el posible desplazamiento al rojo) y, por tanto, la energía total se conserva.

8voto

CooperCape Puntos 185

Siguiendo con la respuesta de @Jahan Claes, ¡podemos hacer cuentas!

Digamos que el hombre de la nave espacial utiliza un quemador de etanol. El etanol tiene un cambio de entalpía de $1058 \text{ kJ}/\text{mol}$ pero para simplificar digamos que es igual a $1050$ . Si se quema $1$ mol de etanol entonces da aproximadamente $1050 \text{ kJ}$ . Para el observador en movimiento es igual a $350\,000$ julios/min. Para el observador estacionario será igual a $210\,000$ julios/min.

Digamos también que el quemador de etanol emite una luz naranja, de una longitud de onda de $600 \text{ nm}$ . Utilizando la ecuación $$E = \frac{hc}{\lambda}$$ podemos calcular que la energía de cada fotón es aproximadamente $3.315\times 10^{-19}$ (por suerte para nosotros la velocidad de la luz es la misma para todos los observadores). Esto significa que el observador en movimiento ve aproximadamente $1.056\times 10^{24}$ fotones cada minuto, mientras que el observador inmóvil sólo ve aproximadamente $6.335\times 10^{23}$ fotones cada minuto.

De ello se desprende que $1.056(...)\times 10^{24}\times3 = 6.335(...)\times 10^{23}\times 5$ y todo sale bien :)

3voto

Zero Puntos 545

Dices que el gas del mechero es suficiente para estar encendido durante 5 minutos, pero cuyos 5 minutos ? Supongo que te refieres a 5 minutos calculados por el observador de la nave espacial. En ese caso, para el observador en reposo, la cantidad de gas en el encendedor es suficiente para estar encendido durante $5\times (5/3)=8.3$ minutos. Así, cuando el observador de la nave espacial enciende el gas sólo durante 3 minutos y le quedan 2 minutos de gas, el observador en reposo ve que el gas ha estado encendido durante 5 minutos y le quedan 3,3 minutos de gas. No hay contradicción ni violación de ninguna ley.

P.D. Si usted dice que la cantidad de gas en el encendedor puede arder durante 5 minutos según el observador en reposo, entonces desde el punto de vista del observador de la nave espacial el encendedor contiene sólo 3 minutos de gas. Entonces, si lo enciende durante 3 minutos, no puede quedar gas dentro del mechero.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X