$$\begin{align*}
I&=\int^1_0\frac{1-x^2+(1+x^2)\log x}{x+1}\frac{dx}{x\log^3x}\\
&=\left.\frac{-1}{2\log^2x}\frac{1-x^2+(1+x^2)\log x}{x+1}\right|^1_0-\int^1_0\frac{-1}{2\log^2x}\frac{\partial}{\partial x}\left(\frac{1-x^2+(1+x^2)\log x}{x+1}\right)dx\\
&=\int^1_0\frac{1}{2\log^2x}\frac{\partial}{\partial x}\left(1-x+\frac{(1+x^2)\log x}{x+1}\right)dx\\
&=\frac12\int^1_0\frac{1}{\log^2x}\left(-1+\frac{(1+x^2)}{x(x+1)}+\frac{(x^2+2x-1)\log x}{(x+1)^2}\right)dx\\
&=\frac12\int^1_0\left(\frac{1-x}{x(x+1)\log^2x}+\frac{1}{\log x}-\frac{2}{(x+1)^2\log x}\right)dx\\
&=\frac12\int^1_0\left(\frac{1-x}{x(x+1)\log^2x}+\frac{2}{(x+1)^2\log x}\right)dx+\frac12\int^1_0\left(\frac{1}{\log x}-\frac{4}{(x+1)^2\log x}\right)dx\\
&=\frac12(I_1+I_2).
\end{align*}$$
$$\begin{align*}
I_1&=\int^1_0\left(\frac{1-x}{x(x+1)\log^2x}+\frac{2}{(x+1)^2\log x}\right)dx\\
&=\int^1_0\left(\frac{1-x^2+2x\log x}{(x+1)^2}\right)\frac{dx}{x\log^2x}\\
&=\left.\frac{-1}{\log x}\frac{1-x^2+2x\log x}{(x+1)^2}\right|^1_0-\int^1_0\frac{-1}{\log x}\frac{\partial}{\partial x}\left(\frac{1-x^2+2x\log x}{(x+1)^2}\right)dx\\
&=\int^1_0\frac{-1}{\log x}\frac{-2(1-x)\log x}{(x+1)^3}dx\\
Y=2\int^1_0\frac{1-x}{(x+1)^3}dx=\frac12.
\end{align*}$$
Mathematica es capaz de evaluar $I_2=12\log A-1-\frac43\log 2$, por lo que la conjetura forma cerrada está probado.
Edit: para evaluar $I_2$, escribimos $F(a)=\int^1_0\frac{x^un-1}{(x+1)^2\log x}dx$, de modo que $F(0)=0$ y $F'(a)=\int^1_0\frac{x^a}{(x+1)^2}dx$. Tenemos
$$\begin{align*}
I_2&=\int^1_0\left(\frac{1}{\log x}-\frac{4}{(x+1)^2\log x}\right)dx\\
&=\int^1_0\frac{x^2+2x-3}{(x+1)^2\log x}dx=F(2)+2F(1).
\end{align*}$$
A continuación, tenemos que dar la forma cerrada de $F(a)$. En primer lugar tenemos
$$\begin{align*}
\int^1_0\frac{x^adx}{(1-zx)^2}&=\int^1_0\sum_{n=0}^{\infty}(n+1)z^nx^{n+a}dx\\
&=\sum_{n=0}^{\infty}\frac{(n+1)z^n}{n+a+1}\\
&=\sum_{n=0}^{\infty}z^n-\sum_{n=0}^{\infty}\frac{z^n}{n+a+1}\\
&=\frac{1}{1-z}-\frac{a} {+1}~_2F_1(1,a+1;a+2\mid z)
\end{align*}$$
para todos $|z|<1$. Tomando límites, tenemos
$$\begin{align*}
F'(a)&=\frac12-\frac{a} {+1}~_2F_1(1,a+1;a+2\mid-1)\\
&=\frac12-\frac{a}{2}\left(\psi\left(\frac{a+2}{2}\right)-\psi\left(\frac{a+1}{2}\right)\right)
\end{align*}$$
y por lo tanto
$$\begin{align*}
F(a)&=\int^a_0F'(b)~db\\
&=\frac{a}{2}-\int^a_0\frac{b}{2}\left(\psi\left(\frac{b+2}{2}\right)-\psi\left(\frac{b+1}{2}\right)\right)db\\
&=\frac{a}{2}-2\int^{/2}_{0}c\left(\psi(c+1)-\psi(c+\frac12)\right)dc\\
&=\frac{a}{2}+\int^{a/2}_{0}(2\psi(c+1)-\psi(c+\frac12))dc-2\int^{a/2}_{0}\left((c+1)\psi(c+1)-(c+\frac12)\psi(c+\frac12)\right)dc\\
&=\frac{a}{2}+(2\log\Gamma(a/2+1)-2\log\Gamma(1)-\log\Gamma(a/2+1/2)+\log\Gamma(1/2))\\
&-2\left(\int^{a/2+1}_{1}-\int^{a/2+1/2}_{1/2}\right)c\psi(c)dc\\
&=\frac{a}{2}+\log\Gamma(1/2)+2\log\Gamma(a/2+1)-\log\Gamma(a/2+1/2)-2\left.(c\log\Gamma(c)-\psi^{(-2)}(c))\right|^{a/2+1,1/2}_{a/2+1/2,1}\\
&=\frac{a}{2}+\log\Gamma(1/2)+2\log\Gamma(a/2+1)-\log\Gamma(a/2+1/2)-(a+2)\log\Gamma(a/2+1)\\&+(a+1)\log\Gamma(a/2+1/2)-\log\Gamma(1/2)+2\left.(\psi^{(-2)}(c))\right|^{a/2+1,1/2}_{a/2+1/2,1}\\
&=\frac{a}{2}-a\log\Gamma(a/2+1)+a\log\Gamma(a/2+1/2)+2\left.(\psi^{(-2)}(c))\right|^{a/2+1,1/2}_{a/2+1/2,1}\\
&=\frac{a}{2}-\log\Gamma(a/2+1)+a\log\Gamma(a/2+1/2)\\
Y+2\left(\psi^{(-2)}(a/2+1)-\psi^{(-2)}(a/2+1/2)+\psi^{(-2)}(1/2)-\psi^{(-2)}(1)\a la derecha).\\
\end{align*}$$
Aquí $\psi^{(-2)}(a)=\int^a_0\log\Gamma(x)dx$.
Ahora podemos dar una forma cerrada para $I_2$:
$$\begin{align*}
I_2&=F(2)+2F(1)\\
Y=(1-2\log\Gamma(2)+2\log\Gamma(3/2))+2\left(1/2-\log\Gamma(3/2)+\log\Gamma(1)\right)\\
Y+2(\psi^{(-2)}(2)-\psi^{(-2)}(3/2)+\psi^{(-2)}(1/2)-\psi^{(-2)}(1))\\
&+4(\psi^{(-2)}(3/2)-\psi^{(-2)}(1)+\psi^{(-2)}(1/2)-\psi^{(-2)}(1))\\
Y=2+2\psi^{(-2)}(2)+2\psi^{(-2)}(3/2)+6\psi^{(-2)}(1/2)-10\psi^{(-2)}(1).
\end{align*}$$
Usando los valores conocidos de $\psi^{(-2)}(2)=\log2+\log\pi-1$, $\psi^{(-2)}(1)=\frac12\log 2+\frac12\log\pi$, $\psi^{(-2)}(3/2)=\frac34\log\pi+\frac{5}{24}\log 2+\frac32\log A-\frac12$ y $\psi^{(-2)}(1/2)=\frac14\log\pi+\frac{5}{24}\log 2+\frac32\log$, finalmente, a la conclusión de que $I_2=12\log A-1-\frac43\log 2$, y por lo tanto $$I=\frac12(I_1+I_2)=6\log A-\frac23\log 2-\frac14.$$