Un primer curso de análisis complejo por Matthias Beck, Gerald Marchesi, Dennis Pixton y Lucas Sabalka Ejercicio 3.27
(Ejercicio 3.27) Consideremos el plano $H$ determinada por la ecuación $x + y -z = 0$ .
¿Qué es un vector normal unitario a $H$ ?
Calcular la imagen de $X:=H\cap \mathbb S^{2}$ bajo la proyección estereográfica $\Phi$ .
-
- Para 2, he calculado $X$ ser un círculo 3D parametrizado aquí y que su imagen sea $Y:= \Phi(X) = \{|z-(1+i)|^2 = 3\}$ pero ahora pregunto:
-
Para 1, ¿Qué importancia tiene preguntar por el vector normal unitario?
He calculado que los vectores normales unitarios son $[1,1,-1]\frac{\pm 1}{\sqrt{3}}$ . Observo que sus puntos terminales están en la esfera unidad.
Estos son los parámetros:
$Y:= \Phi(X) = \{|z-(1+i)|^2 = 3\}$ se parametriza:
$$\begin{bmatrix} y_1(t)\\ y_2(t)\\ y_3(t) \end{bmatrix} = \begin{bmatrix} \sqrt{3}\cos(t) + 1\\ \sqrt{3}\sin(t) + 1\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}\sqrt{3}\cos(t)+ \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}\sqrt{3}\sin(t)$$
$X$ se parametriza:
$$\begin{bmatrix} x_1(t)\\ x_2(t)\\ x_3(t) \end{bmatrix} = \begin{bmatrix} \sqrt{\frac 2 3} \cos[t]\\ -\sqrt{\frac 2 4} \sin[t] - \sqrt{\frac 2 {12}} \cos[t]\\ -\sqrt{\frac 2 4} \sin[t] + \sqrt{\frac 2 {12}} \cos[t] \end{bmatrix} = \begin{bmatrix} \sqrt{\frac 1 3}\\ -\sqrt{\frac 1 {12}}\\ \sqrt{\frac 1 {12}} \end{bmatrix}\sqrt{2}\cos(t)+ \begin{bmatrix} 0\\ -\sqrt{\frac 1 {4}}\\ -\sqrt{\frac 1 {4}} \end{bmatrix}\sqrt{2}\sin(t)$$
$$H = \{x + y -z = 0\} = \{[1,1,-1] \cdot [x,y,z]=0\} = \{[1,1,-1]\frac{1}{\sqrt{3}} \cdot [x,y,z]=0\}$$ se parametriza:
$$\begin{bmatrix} h_1(r,s)\\ h_2(r,s)\\ h_3(r,s) \end{bmatrix}=\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}r + \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}s$$