Hallar el valor de la integral $\int_{0}^{\frac{\pi}{12}}\frac{\tan^2x-3}{3\tan^2x-1}dx$
$\int_{0}^{\frac{\pi}{12}}\frac{\tan^2x-3}{3\tan^2x-1}dx$
$=\int_{0}^{\frac{\pi}{12}}\frac{1}{3}\frac{\tan^2x-\frac{1}{3}+\frac{1}{3}-3}{\tan^2x-\frac{1}{3}}dx$
$=\frac{1}{3}-\frac{8}{9}\int_{0}^{\frac{\pi}{12}}\frac{dx}{\tan^2x-\frac{1}{3}}dx$
$=\frac{1}{3}-\frac{8}{9}\int_{0}^{\frac{\pi}{12}}\frac{\cot^2x dx}{1-\frac{1}{3}\cot^2x}dx$
$=\frac{1}{3}-\frac{8}{9}\int_{0}^{\frac{\pi}{12}}\frac{\cot^2x dx}{\frac{4}{3}-\frac{1}{3}\csc^2x}dx$
Estoy atascado aquí y no podía resolver further.Please ayudarme.