1 votos

Demostrar que $3 \le \sum_{cyc}a\sqrt{b^3 + 1} \le \sum_{cyc}ab^2 + 3$ donde $a, b, c \ge 0$ y $a + b + c = 3$ .

$a$ , $b$ y $c$ son no negativos tales que $a + b + c = 3$ . Demostrar que $$\large 3 \le a\sqrt{b^3 + 1} + b\sqrt{c^3 + 1} + c\sqrt{a^3 + 1} \le \frac{ab^2 + bc^2 + ca^2}{2} + 3$$

Este problema es una adaptación de un concurso... que ocurrió hace dos años. Sí, he cambiado las cosas.

He proporcionado una solución a continuación si desea comprobarlo. (Estoy escribiendo esto a medianoche por lo que mi conciencia se está alejando y no puedo concentrarme).

1voto

Lê Thành Đạt Puntos 261

Tenemos que $a, b, c \ge 0 \iff \sqrt{a^3 + 1} - 1, \sqrt{b^3 + 1} - 1, \sqrt{c^3 + 1} - 1 \ge 0$

$$\implies c\left(\sqrt{a^3 + 1} - 1\right) + a\left(\sqrt{b^3 + 1} - 1\right) + b\left(\sqrt{c^3 + 1} - 1\right) \ge 0$$

$$\iff a\sqrt{b^3 + 1} + b\sqrt{c^3 + 1} + c\sqrt{a^3 + 1} \ge a + b + c = 3$$

El signo de igualdad se produce cuando $\left[ \begin{align} a = b = 0 &\text{ and } c = 3\\ b = c = 0 &\text{ and } a = 3\\ c = a = 0 &\text{ and } b = 3 \end{align} \right.$ .

Además, tenemos que $$\sqrt{x^3 + 1} = \sqrt{(x^2 - x + 1)(x + 1)} \le \dfrac{(x^2 - x + 1) + (x + 1)}{2} = \dfrac{x^2 + 2}{2}$$

$$\implies a\sqrt{b^3 + 1} + b\sqrt{c^3 + 1} + c\sqrt{a^3 + 1} \le \frac{a(b^2 + 2) + b(c^2 + 2) + c(a^2 + 2)}{2}$$

$$= \frac{ab^2 + bc^2 + ca^2}{2} + (a + b + c) = \frac{ab^2 + bc^2 + ca^2}{2} + 3$$

El signo de igualdad se produce cuando $\left[ \begin{align} a = 0, b = 1 \text{ and } c = 2\\ a = 0, b = 2 \text{ and } c = 1\\ a = 1, b = 2 \text{ and } c = 0\\ a = 1, b = 0 \text{ and } c = 2\\ a = 2, b = 0 \text{ and } c = 1\\ a = 2, b = 1 \text{ and } c = 0\\ \end{align} \right.$ .

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X