Ajusté dos modelos gee con dos estructuras de correlación diferentes, intercambiable vs ar(1), que dieron como resultado valores p.muy diferentes. Me pregunto qué razones han llevado a eso. ¿Alguien podría ofrecer una explicación?
> summary(fit1)
Call:
geeglm(formula = LAU ~ SAMPLENO, data = bd, id = MAGE, corstr = "exchangeable")
Coefficients:
Estimate Std.err Wald Pr(>|W|)
(Intercept) 0.067349 0.004537 220.32 <2e-16 ***
SAMPLENO -0.002800 0.000947 8.74 0.0031 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Estimated Scale Parameters:
Estimate Std.err
(Intercept) 0.000425 0.000166
Correlation: Structure = exchangeable Link = identity
Estimated Correlation Parameters:
Estimate Std.err
alpha 0.206 0.249
Number of clusters: 9 Maximum cluster size: 8
> summary(fit2)
Call:
geeglm(formula = LAU ~ SAMPLENO, data = bd, id = MAGE, corstr = "ar1")
Coefficients:
Estimate Std.err Wald Pr(>|W|)
(Intercept) 0.06392 0.00588 118.25 <2e-16 ***
SAMPLENO -0.00142 0.00219 0.42 0.52
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Estimated Scale Parameters:
Estimate Std.err
(Intercept) 0.000427 0.000172
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
Estimate Std.err
alpha 0.659 0.221
Number of clusters: 9 Maximum cluster size: 8